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SABSTRACT

A mul-resolution signal processing algorithm ('MRSI0) was devised to max-
mizeth detection rangeof imaging infrared seekers against ship targets. Image-

based mulgtions performed on an IBM PC AT verifythat the new algorithm
prov.r signal-to-noise enhancement (relative tp'hot-spot detection) given

where is the number of pixels 96cupied by the target in the

image, and 0.8,4. The processor efficiency, #, is remarkably ipvariant with

respect to se or/ship range (i.e., scale), viewing aspect, and ship class.

Probabil' ies detection, determined via 2500 image-based Monte Carlo

simulati ns, ag ee with well-known analogous results of psychophysical ex-
perime ts perf rmed with human subjects. A new nmethod is presented for
supres ing fals alarms caused by cloud reflections from the sea surface.
Regar less of w ether final target classification is performed on-board the
missi by a computer algorithm or off-board by a person inspecting imagery
t.leietered from the missile, MRSI substantially improves predicted system

j ~perf~rmance. 
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3 1.0 INTRODUCTION AND SUMMARY

Self-guided missiles have on a number of recent oc- similar outlook was adopted in [13] for assessing the I
casions demonstrated high effectiveness in operations performance of a digitally-implemented autotracker
against surface ships [1). Both infrared (IR) and radio algorithm.
frequency (RF) mean; havt: historically each found ap- Our proposed solution to the ship detection problem3 plication as the sensing element in antiship missile is comprised of a separable multi-resolution filter,
"(ASM) guidance units. Some well-known advantages which we refer to as a Multi-Resolution Spatial In-
of IR technology in this application include (2] tegrator (MRSI), first described in [14].

An early multi-resolution processing application its-
* passive operation, volved the use of quad trees for encoding 1-bit images* good resistance to jamming, and [15]. A variety of additional multi-resolution image
* high spatial resolution. processing applications and computational methods

and costs are discussed in [16,171. The multi-resolution
The impetus for high spatial resolution follnws from processor discussed in this report is highly specializ-
potetiala operational needs for target classification: ed to maximize SNR against rectangular and nearly-
assuming ade'i-ate signal to-noise ratio (SNR), high rectangular targets of known orientation, but whose
classification accuracy requires high spatial resolution, size, aspect ratio, and position in the image are
regardless of whether the imagery is interpreted by a unknown. The MRSI approach is by design ideally
man[3,4] or processed by a computer [51. Perhaps the suited for processing data from a linear army scann-
key .imitation of IR ASM seekers is limited range per- ing sensor, i.e., image data acquired sequentially by
formance under conditions of poor atmospheric column.
visibility. Thus, tht purpose of the signal processor The time domain responses and SNR enhancement
described in this report (referred to as "MRSI" for provided by MRSI processing are amenable to exactMulti-Resolution Spatial Integrator) is to perform analytical computation for only a few geometrically
detection of targets having minimum contrast relative simple target shapes. A number of such analytically
to their background, in a digitized two-dimensional predictable processor responses was used to validate
image. The MRSI processing approach could be used a general image-based computer simulation. Test
to optimize the detection range of infrared sensors targets used for this purpose included point targets,
against large area targets such as ships. bar targets, white gaussian noise, and bar targets in

Means previously investigated for maximizing IR noise. The computer simulation was then exercised
sensor SNR, relevant to the ASM seeker application, against a variety of ship images representative prin-
include waveband optimization 16,7], advanced IR cipally of frigates and aircraft carriers, seen from
detector developments [8,9], and multi-frame image ranges of from 5 to 30 nautical miles (nmi) at viewing
processing 110]. Nonetheless, acquisiton range remains aspects from 900 (beam) to 10 . Threshold SNRs for
an important performance index, and improvemen:s detection were established in simulation by adding to
in acquisition range an important objective, in the each test image progressively increasing levels of noise.
design of next generation antiship seekers. The single- It was found that MRSI processing, under a broa
frame signal processing approach discussed in this variety of conditions, provides about ten-fold SNi%
report is complementary to earlier approaches for SNR enhancement ("processing gain") relative to hot-spot
optimization. detection. Moreover, the processing gain turns out to

The idea for our new signal processing concept was have been computable, with no more than about 10%
anticipated by a brief study indicating that detection maximum error in every c,'se, as
ranges obtained by human observers of visual displays
could under a broad variety of conditions greatly ex- G = vN (1)
ceed ranges obtained by a hot-spot detection algorithm
[11]. (This analysis was based on IR ship signatures where Npi. is the number of pixels occupied by the
cataloged in [12] and the human observer/display target in the image, and if is given by
model provided in [3,4].) Thus, the predicted perfor-
mance of an archetypal "human observer" became for = 0.81. (2)
us the standard against which to guage the perfor-
mance of proposed ship detection algorithms. A The processing constant, 1, is remarkably invariant

1
13
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with respect to sensor/ship range (i.e., scale), viewing cides with a previously published curve fit to data ob- -
aspect, and ship type. tained from visual detection experiments performed

The existance of a simply-computed analytical ex- with human observers of TV displays (31.
pression for processing gain, Eq. 1, is in itself a signifi- Two ASM system concepts ar discussed in Section
cant result, as it eliminates the need to perform Image- 15.0, with each concept empbylng a different means
based simulations in connection with cost!perfor- of target classification, viz., classification performed
mance trade studies involving such additional aspects on-board the missile by an autonomous target recogni-
of design as focal plane sensitivity requirements. Also, tion (ATR) algorithm or off-board by a person inspec-
an expression for ,q has been derived that can be Oang imagery telemetered from the missile. Using MRSI I
evaluated simply from ship profiles, such as those pro- to cue a slow scan/high sensitivity "classification
vided in Janes Fightingi Shi 118). Consequently, our mode", as proposed by W. J. Thpf (APL), results in
results are raadily generalized to ship types other than substantial improvements in predicted performance for
those for which detailed simulations have been con- both systcm concepts.
ducted. At least as regards first-order system perfor- In Section 16.0 we present a new method !or sup-

mance assessments, Eq. 1 may be used as a vastly pressing false alarms caused by cleud reflections from
simpler substitute for detailed image-based the sea surface. I
simulations. The image-based simulation itself is coded in FOR-

The principal simulation results are plots of detec- TRAN and operates on ship Images of 64 x 256 pix-
tion probability (PD) vs. SNR (cf. Figs. 42 and 43), els, at 35 spatial resolutions (App. A). The program
based on 2500 image-based Monte Carlo trials. A runs both on the APL National Advanced Systems I
curve fit to the numerically-developed probabilities of (NAS) mainframe and on an IBM PC AT computer,
detection appears to provide a universal curve that can and requires about 450K bytes of memory. All simula-
be used predictively for ships of differing class, observ- tion results provided in this report (more than 2800
ed at a variety of aspects and distances. Interestingly, processed images) were developed on an IBM PC AT.
the curve fit to MRSI/Monte Carlo P. results coin-

14,
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2.0 ASSUMPTONS AND DEFINITONS

soon is considered to be an integral of the scene brightness
direction over a small rectangular region of angular dimensions

ot x il As shown in Fig. 2, dimensions (A, a. */u)
V~J) are parallel to the s-axis, while dimensions (8, g0, O/v)

S are parallel to the x-axis.

MM Leqirtng ojctasafclo spatial samples may be gapped, overlapped. or precise

31) Pocso samples are gapped In both the s- and x-dlrectlons.
14, for which

V,)Classifier <(3)

Detector ara n Samples are precisely adjacent in the s-direction when
signal conditioning T~t

FIgr1. Scanning IR seeker concept. Vertical linear u-1 4
array of I infrared detectors Is scanned In azimuth,
generating I digital waveforms which are then Input to Samples are overlapped in the s-drection whenU ~the MRSI processor. MRSI's output Is a list of objects,
each characterized In terms of Its position, dimensions > : (5)

(az el . an brghtn ss.A nalogous to Eqs. 4 and 5, sam ples are precisely ad-
jacent and overlapped in the x-drection when v =I

it is assumned that the MRSI signal processor is at- and v > 1. respectively.S tached to an imaging sensor that peribrm' iuveill~a, In general, the ratios of sample size to sample spac-
of a scene once very T. seconds, where the interval ing, ui and v, are different in value. For example, depe-
Ty is called the sensor's "frame time' (Fig. 1).

The angular dimensions of a single detector's field-I of-view, denoted as at (in-scan) ana 0 (cross-scan) are
collectively referred to as the seeker's "spatial resolu- -______________

tion" or "Instantaneous field-of-view" (IFOV) and amr 7
specified in milliradian (mr) units. The voltage, V,(j), F
read out from detector i at sampling time j i& t -
presumably proportional to the integral of the scene x i

* radiance over a rectangular region of angular dimcn- a!j~
* sions a x 0.

The viewed scene is assumed to be a rectangle of EDEl
angular dimensions A x K, mr. The sensor IFOV sub-_I
dividies the total scene Into a rectangular grid of W
samples, each of angular dimensions a x A, mr. The~
total scene (also called a "frame") and the sampling _ _ __A

geometry are depicted in Fig. 2. Also shown in Fig.I 2 is a rectangular coordinate frame (s,x). Samnies are
obtained on a uniform rectangular grid, with adjacent FWgur2. Total scene Is a rectangle of angular dimeni-
samples separated by angle a/u in the s-direction and sions, Ax&. Spatial semplas are of angular dimensions,
by angle #1v in the x-direction. (0/v is, of course, the a x p. Samples are obtained on centers displaced by
angular separation of adjacent detector elements in angles aiu and Oft. All angles are measured In millira
the detector array.) As mentioned ..bove, each sample diana (mr.)

I1
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ding on the sensor's implementation, samples may be a) Cool Hot Cool
adjacent in s and gapped inx(u= 1, v< 1) or overlap- 7 , . TST:T T= To
ped in s and adjacent in x(u> 1, v= 1); etc. il-i-*

In the following discussion, a scanning sensor imn- yplementation is assumed, in which the s-coordinate I !
(Fig. 2) coincides with the direction of scan, and the
x coordinate is variously referred to as the "criiss-scan"
or "cross-channel" coordinate. Quantity u is conven- Detector
tionally referred to as the in-scan sample factor, hay- field-of-view sI
ing units of samples per dwell.

Although the following discussion adopts the b)
parlance of scanning sensors, the MRSI processor is
readily adapted to staring mosaic s' .isors as w-ll. .-1 2a/i

Regardless of the numerical values of the parameters S r VMS
defined in Fig. 2, the sensor develops every TF v -
seconds a matrix of numbers, V (j) 1, in ivhich each
matrix element is proportional to the brightness of the c
scene, averaged over a neighborhood of dimensions
a/ X fl, centered on the anpular coc-rdinates (jei/u, Time
43/lv).

The detector index, i, is also the cross-channel im- Figure 3. Part a): The fleld-of-view of an IR detector
age coordinate, taking on the range of values is scanned across an ideal bar target. T denotes

temperature. Detector and target dimensions, a and -y
1 s i < I = [Bv/l], (6) respectively, are In angle units (mrad). Angular rate of

scan Is a constant, 0, mrad/sec.
where square bracktts [" denote the integer part of Part b): Appearance of the voltage waveform obtained
their argumuent. Similarly, the discrete time variable, at the detector's output for the situation depicted In
j, takes on the range of values part a).

l •jS<J =[Au/cgj. (7)n

i.e., as the ratio of peak signal to roeot-mean-square
"During aný given sampling interval (i.e., for a given (RMS) noise, at the output of a single detector channel.

value of j), the MRSI processor's input is a vector V, A basic measure of seeker sensitivity is its "noise
of dimension L Equivalently, the processor operates equivalent temperature'. NEAT, calculated as (cf.
upon an input consisting of I digital waveforms. Fig. 3)

If the IR seeker were positioned in the far field of
a bar target, the voltage output of each detector chan- NEAT = (rT - T,)/SNRC (9)
nel would appear approximately as shown in Fig. 3. U

Far the purposes of this discussion, an object of with SNRc given by Eq. 8.
angular dimensions: The sensitivity parameter NEAT may be calculated

using measurements made against calibrated
%, in the direction of scan ("in-scan") laboratory targets, using Eqs. 8 and 9. Quantity NEAT
-x cross scan, may also be calculated (or predicted prior to sensor

fabrication) as a function of such key seeker opticalis said to be "resolved in-scan" when -y>ci, and characteristics as aperture, 0, a, detector detectivity I
"resolved cross-scan" when y,,> #. An object is said (D*), etc. (19).
to be "fully resolved" when it is resoNved both in-scan The number of pixels (spatial resolution elements)
and cross-scan. occupied by a rectangular target of size {fy (in-scan) U

As discussed in [11], ship targets arc fully resolved x -yX (cross-scan)) is given by
at initial detection, for all cases of t-iactical interest.

The "channel signal-to-noise ratio", SNRC, is Npx = 0-y.f/r3 (10)
calculated as (cf. Fig. 3b)

Equation 9 is presented above from the perspective
SNRc Vh - VK) / V.,, (8) of using calibrated bar target data to obtain a measured

_ ±
__ _ _ __ _ _ _
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va7ue of NEAT, as a means of characterizing seeker temperature of the tactical target. Apparent ship con-

sensitivity. Once NEAT has been obtained, a variant trast temperature, AT, is sensitive to a wide variety of
of Eq. 9 may then be used to predict the SNR expected parameters characteristic of the target, the background,
in a tactical scenario, viz., and the atmosphere [20].

Quantities AT and SNRc are most generally deter-
SNRC = AT/NEAT (1i) mined as spatial distributions since they may take on

* different values for each pixel in the frame.
where the quantity ATis now the "apparent" contrast

M
17:
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3.0 HUMAN VISION AS A MODEL OF PERFECT PROCESSING

At least as regards spatial resolution (a, Cs), re- Retinal

quirements for target recognition are at odds with re-

quirements for long range L.quisition. Assuming ade- - - - _ - 1 _- -

high spatial resolution, regardless of whether the im-
agery is interpreted by a man [3,41 or processed by a ••computer [5). Thus, the objectives of recognition arefurthered by making the number of pixels on target
(Np1x) very large. On the other hand, SNR is max- isn

imized when the resolution element is matched in size
to the target, i.e., acquisition range is maxirmiized when
Nplx = 1. Figure 4. Conceptual model of the human vision

The apparent discrepancy in resolution requirements system (HVS) detection process, based on an infinite-

for IR acquisition and recognition can be resolved via dimensional array of spatial matched filters.

detection processing modeled after our understanding
of eye/brain processing in human vision [3].In performing detection of resolved targets in elec- variants of each shape obtainable by the processes of

tronic images, humans are apparently capab!e of per- translation, rotation, and scaling.

forming adaptive integration over the target's are& - The detection model diagrammed in Fig. 4 is not

an astounding feat in light of the fact that 'he boun- directly amenable to simulation or digital realization,

daries for area integration must be established prior since there are an infinite number of filters in the ar-

to conscious detection. ray. We nonetheless fearlcssly assume that it is possi-

The remarkable human capacity for subliminal in- ble to implement with digital hardware an approxima-

tegration over arbitrarily sized and located target areas tion to synchronous area integration, which leads to

is referred to by Rosell as "the perfect synchronous the definition of a detection SNR,

integrator model" of human vision, and is attributed
by Rosell to original discovery by Otto Schade, Sr. [4]. SNR SNRc • N .4x (12)

The effect of Xerfect synchronous integration is to d

enhance by N;, the single channel SNR, SNRc, Equivalently, the effect of synchronous area Integra-
given by Eq. 11. A further characteristic of human vi- tion can be expressed in terms of a "processing gain"
sion is that the process of detection cannot be
separated from the process of estimating target angular G NR = (13)
dimensions; the two processes are performed in a G = (SNRdEI/SNRc) = (P1x

coupled and purely parallel fashion.
Figure 4 depicts a conceptual model of the human presented previously as Eq. 1. Quantity q in Eqs. 12

vision system (IIVS) detection process based on a and 13 is a "processor efficiency" that is included to

parallel array of spatial matched filters, in which each allow for the possibility of suboptimal processor per-
filter in the array corresponds to a possible target formance. In the usage of this report, a PSI is any pro-

shape. Assuming that the HVS is indeed a perfect syn- cessor, human or machine, characterized by the pro-

chronous integrator (PSI), every possible target shape perty 7 = 1. By extension, an imperfect synchronous

is represented in the parallel filter bank, as well as all integrator (ISI) is a processor for which q < 1.
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9 4.0 ACQUISITION RANGE CALCULATIONS

3 It follows from Eqs. 11 and 12 that where

AT = *SR, . NEAT.' Np2,, . (14) Aslhip = ship's projected area, m2

Assuming somewhat arbitrarily a threshold value for ot, /3 = sensor pixel dimensions (cf. Fig. 2), mr
SNRdet R range from seeker to ship, km.

SNRTet = 5, (15) From Eqs. 13 and 18

the value of AT required for detection, RAT G = ,AhIp/R(af) (19)SRAT =5 -NEA T/qMN'(16
PX The apparent contrast required for detection may be

is obtained. written in terms of Eq. 19 as
Quantity RATis similar to the Minimum Resolvable

Temperature (MRT) parameter conventionally used to RAT = 5 • NEAT/G
describe the performance of human observers of ther- (20)
mal image displays. In fact, RAT can be made equal
to MRT if Equations 17, 19, and 20 can be used for calculating

seeker acquisition range against ship targets, as in-U SNRT, is set equal to 2.8 (rather than 5), cor- dicated graphically in Fig. 5, for the strawman seeker
responding to the experimentally determined and target characteristics provided in Table 1.
value required by human observers to achieve Curve A in Fig. 5 is RAT for a simple hot spot detec-
50% probability of detection, tion algorithm, from Eq. 17. Curves B and C are RAT

* -9 is set equal to unity, and for synchronous integration processing, from Eq. 20,
0 an additional factor (TF/0.2)'" is included, for the front- and beam-aspect targets, respectively.

where TF is frame time (typically, 1/30 se- Also shown in Fig. 5 (curve D) is a representative
cond), to account for the smoothing of rapid ship "signature" (i.e., ship apparent contrast
temporal variations by the eye's limited response
time (-0.2 s).

The application of MRT-like descriptors to 0.50- 1 I I
automatic target screeners is also proposed in [21]. A (RAT for hot-spot detection)

Inthe absence of spatial integration processing (i.e.,performing threshold detection directly on the in- !
dividual channel outputs), Eq. 16 becomes S 0.20- --tS] ~D(Ship "signature")

SRAT=. 5. -NEAT. (17) E °'.10- "
RAT= . EA.B (Front-aspect target)|

The ratio of Eqs. 16 and 17 is, of course, Eq. 13. B ortae target)

For fixed sensor IFOV (a and ft in Fig. 2), Npix
decreases with increasing range. Hence, from Eq. 16, 8 C (Side-aspect target)
greater apparent contrast is required to detect distant 0.02[ 12
targets than is required to detect closer targets. Ap-
parent contrast required for simple hot spot detection,
given by Eq. 17, is independent of Npix and thus is 0.01 I-
also independent of target range. 5 KM 10 KM

Tl further evaluate Eq. 16, the number of pixels on Range to ship
target, N is expressed as Figure 5. Acquisition range calculations for

SA(1 strawman seeker and target characteristics provided
Npx(18) In Table 1.

I
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Table 1 temperature vs. range) for a particular locale, season,
Strawman saeker and target parameters time of day, probability of weather, sensor height-

above-water, and IR waveband [12].
Seeker Assumed Intersection points I, and 12 in Fig. 5 indicate that I

Parameter Meaning Value synchronous integration processing achieves acquisi-
a In-scan resolution 0.2 mr tion ranges of 7.5 and 10.3 kilometers (kin) against

Cross-scan resolution 0.2 mr the front- and beam-aspect targets, respectively. Lack
Processor efficiency I of intersection between curves D and A indicates that

NEAT Temperature sensitivity 0.1 K hot spot detection fails to achieve target acquisition.
At this juncture, it should be obvious that syn-

Target Assumed chronous area integration offers considerable perfor-
iParameter Meaning Value mance advantage relative to hot spot detection. Less

A hp (900) Ship beam-aspect area 4750 m2  obvious is how these benefits are to be obtained, since
Ashlp (0*) Ship bow-aspect irea 1100 m2 the only model presented thus far for a synchronousarea integrator (viz., Fig. 4) is unrealizable.

I
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5.0 AN IMPERFECT SYNCHRONOUS INTEGRATOR

3 In this section we develop the structure of a corresponding to a filter bank comprised of 15 spatial
realizable signal processor (an "imperfect synchronous filters. The number of spatial filters may be reduced
integrator,' or ISl) having performance characteristics still further by culling out filters that correspond to
almost as good as the unrealizable PSI depicted in Fig. unlikely target aspect ratios. As indicated in Fig. 7 for
4. example, there may be very little penalty in removing

We start the ISI design with the structure of Fig. filters corresponding to (k,n) = (8,4) and (k,n) =
4, i.e., a processor configured as a parallel bank of (2,64); targets having such aspect ratios can still be
spatial filters. The PSI is able to accommodate target detected, although with reduced SNR gain.
profile uncertainties in shape, scale, position, and The parallel bank of 13 filters corresponding to Fig.
orientation. The first step in reducing processor com- 7 may be conceived as having a single image as input
plexity is to note that the rotational degree of freedom and generating 13 blurred/reduced resolution images
is unneeded in the present application: to sea-skimming as its output. (In the image-based simulations discuss-UI
missiles flying wings-level, the major axis of ship ed in Section 14, a processor having 35 spatial filters
targets will always appear parallel to the horizon, was routinely simulated on an IBM PC AT.) It is for-

The next step in reducing processor complexity is tunate from the standpoint of data throughput re-
to constrain the spatial filter responses to be rectangles. quirements that the sampling rate for each of the 13
Thus, when the original image consists of a single reduced resolution images is substantially lower than
bright pixel against an otherwise uniform background, for the original full resolution image.
the output image of each filter will be a rectangle of Considering Fig. 6, n = 4 is the lowest resolution
dimensions k pixels (cross-scan) by n pixels (in-scan). at which the scene need be observed from the stand-
Consequently, each filter in the filter bank can be label- point of matched filtering for detection. This has sug-
ed with its "resolution indices", k and n, and general- gested the structure of a detection preprocessor
ly described in terms of "the (k,n) filtee' The resulting depicted in Fig. 8. Each of the I detector channels is
suboptimal approximation of Fig. 4 is depicted in processed by an identical such preprocessor. The nota-
Fig. 6. tion for image data generally is

Finally, the required number of filters in the filter
bank is further limited by constraining the resolution Vi' Wj) (22)
indices to be powers of 2, between specified minimum
and maximum values based on the likely target angular where we recall that indices (ij) refer to position in
dimensions at initial detection. For example, one may the image (cf. Fig. 1) and indices (k,n) denote the
choose spatial resolution of the image. Thus

/og2k = 1, 2, 3 (21) V1i' (j)
1o 2 n = 2, 3. . ..6 in Fig. 8 is the image data as originally output from

(k,n) = (11) the detector array, at the original (k,n) = (1,1)
Original -

Image

(k = ) (,(,4) (k ) - ,n-2,4) •Azimuth Index, n
• 4 8 16 32 64

I II I

2- 2 x4 2 x8 2 x16 2 x32
Threshold Elevation4 4 x 4 4 x 8 4 x 10 4 x 32 4 x 64
decision Index, k
process 8 8 x 8 8 x 16 8 x 32 8 x 64

Figure 6. Imperfect synchronous Integrator (ISI) ob- Figure 7. Matrix of spatial resolutions for a spatial
talned from Figure 4 by setecting spatial filter filter array.
responses as unrotated rectangles.

2
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Detector Boxcar 4-fold data A = total in-scan field-of-view, mr
SVntegrator decimation 6 = angular rate-of-scan m r/s

V1 '-")- , = frame time, s

and recognizing that the sample rate per channel, f,
Figure 8. Detection preprocessor block diagram. (Hz), is given by

Sf, =J,,,x/ TF (26)
resolution. As shown in Fig. 8, tht voltage time = (

waveform from detector 4 denoted from Eqs. (24)-(26), it can be found that

W-1 (j) Ou/4c (27)

(where j is time) is smoothed by a boxcar integrator The factor 4 in the denominator of Eq. 27 is due to
and decimated four-fold in time; i.e., only one of each the decimation step in Fig. 8.
four samples output from the boxcar integrator is us- The factor (1/4) preceding .he sum in Eq. 23 is a I
ed in subscquent signal processing stages. The effect normalization that may not be required in a hardware
of the detection preprocessing step is to provide an im- realization of the processor.
mediate two-fold improvement in SNR and an im- The general structure of the complete ISI, which is p
mediate four-fold reduction in subsequent data called a Multi-Resolution Spatial Integrator (MRSI),
throughput requirements. is shown in Fig. 9. The elements of MRSI are:

Of course, :,ie two-fold SNR improvement is only * the detection preprocessor (Fig. 8),
experienced for targets at least four samples in in-scan * cross-channel averaging (XAV, Section 6),
extent; smaller targets will have less SNR improvement,
with a single-sample target actually experiencing a two-
fold degradation in SNR. This drawback is more ap- Detector Detection Filter band
parent than real for the following two reasons. array preprocessor r - - -...... "-I XVIA

" Subsequent to detection, it is necessary to Cross- V k.40, In-
transfer processing to a classification step. 1.4a1 1 channel t scanI
Thrgets occupying <s4 samples in-scan are too E V',1) I I average V vulae

small to permit image-based classification."• Size is a key indicator of ship target value. Small __-

ships are generally of less interest as targets than V. . . . .
are large ships.

The input/output relationship for the Fig. 8 pre-
processor may be expressed as I Background I

3 NE estimatori I estimator I
E= ¼ -v'(4j-k), (23) BES

j=1,2,... (Au/4]/(

The maximum value of j in Eq. 23+I

li.u = [Au/4ci] (24)

Thehl/ C.1 k 1d

is only one-fourth as large as j,,,, in Eq. 7 due to the TD decision ",

four-fold decimation step. I
A =eTF 

(25) Detections

where Figure g. MRSI signal processor block diagram. I
24
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"" in-scan averaging (lAV, Section 7), in a purely parallel fashion. A means for irnplemen-I background estimation akud subtraction (BES, ting an array of spatial filters at varying spatial resolu-
Section 9), and tions is described in Sections 6 through 8. Like the

"" noise estimation and threshold /decision (NE preprocessor, Fig. 8, the multi-resolution processor
and T/D, Section 10). comprises a large number of simple and identical pro-

cessing elements operating in parallel. The spatial filterEach capitalized acronym (XAV, lAV, etc.) is the name algorithm is separable in in-scan and cross-scan opera-

of the subroutine that implements the corresponding tions, with the cross-scan operations being perform-
Sprocessor function in the FORTRAN simulation ed first. Thus, we operate on the detection preprocessor

(App. A). outputs, viz.,
The action of the detection preprocessor has already

been discussed in connection with Eq. 23 and Fig. 8. VI. 4(j)
The other processing blocks in Fig. 9 will be discuss-
ed in subsequent sections of this report. with a "cross-channel averaging processor". XAV, to

Although the detector array depi:ted in Fig. 9 is obtainIcomprised of square non-staggered elements with a k4j
small cross-channel gap, the MRSI processor is readily V, 4(j) , k = 2,4,8
applied to arrays having all possible combinations of
the following attributes: arbitrary values of v; stag- which are then provided as input to an "in-scan averag-
ger offset between adjacent detector channels; and ing processor", IAV, to ob ain the complete set of
time-delay-and-integration, reduced resolution images,

The means for implementing detection preprocess-
ing as in Fig. 8 is an array of I identical processing Ykj`' (U) , k = 2,4,8
modules operating simultaneously and uncoupled; i.e., n = 4,8,16,32,64

'25
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1 6.0 CROSS-CHANNEL AVERAGING PROCESSOR (XAV)

T'he structure of the cross-channel averaging pro- descriptive of the action of the first XAV stage.
cessor, XAV, is shown in Fig. 10. Although three stages Following the XAV second stage logic in Fig. 10 we
of cross-channel processing are required to obtain the obtain,three levels of cross-channel resolution indicated in Fig. V. j

7(k = 2,4, and 8), for siuplicity of illustration, only V'(i) = (A+B+C+D)/4 = 1/4 E VIA"(j)
two of the stages are depicted. Again for simplicity, i= 1,2.... (1-3)
in Fig. 10, the four quantities A, B, C, and D are defin-

I ed as follows:

A ed as foll8ws: which generalizes toA = V" (j) 1/i VIA ) (31)
B = V•" 4(j) ='"F '4l•11

C V 4 (j) i=1,2... (1-3)

D = V414 (j)

The output of the XAV third stage (not shown in
Thcough the first stage of cross-channel averaging, we Fig. 10) is found to be
o b t a i n V 1 .4( j ) ! / ,

1/8 VI1,_ k'2)p ~vt'"i) = (AB/ [iLi+ 4 iI2 =1,2,.. (i-*•
V14()=1. j 2. )(A+B)/2 == 11[ (9

0v~~.4 (j ,4() + V31.4 j) 1:9

v2. Li= (B+C)/2 = •t['•"l)+v•.Li)]
iV•" Li) =(C+D)/2 =/[V'4 Li) + V•" (i)] Inspection of r:qs 3G through 32 indicates the

general input/output descriptiov, of XAV can be writ-
Generalizing the relationship we see developing in Eq. ten as
29,I 1/ 2 =Ik li) , (33a)

2 E V/a~ 1V , _I (j) (30) V 4 i /
V2• )' =r•=l V+,_r,' (k0 = 2,4,8

i = 1,2 .... (1- 1)i= ,...( - + 1

3tage 1 Stage 2 Stage 3
(Not shown)

1 A((A + C/ i+ Dd4

V2 U )

(k,n)= (1,41 (2,4) (4,4) (8,4)

Figure 10. Cross-channel averaging processor, XAV. Inputs to XAV, denoted Vl,4(0), are provided by detection
preprocessor (Figure 8). Outputs of XAV, denoted by unterminated arrows pointing downward, are provided to
IAV for further processing.

I
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Cross-channel averaging successively reduces the The position of XAV within the overall processing W

number of elevation channels (and hence the max- structure is indicated in Fig. 9.
imum value of t) at progressively higher resolutions Equivalent to Eq. 33a, we can write

1(k) w max(i) = I-k+l (34) k, (j) = ,A[IV{4(j) + 1,2(j)] 4 (33b)

where the number of elevation channels at the original k = 1,2,4
resolution, 1, is given by Eq. 6. i=1,2,... (I-2k+l)

It follows from Eq. 33 that cross-channel process-
ing is instantaneous, i.e., determination of VIA at The FORTRAN routine XAV (App. A) implements
time j depends only on values of V1., also at s...mpl- Eq. 33b.
ing time j.

2
IiI
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7.0 IN-SCAN AVERAGING PROCESSOR (IAV)

The in-scan averaging processor, (IAV), is comprised
of a large number of identical processing "sections". S(1) (38)
each structured as shown in Fig. 11. Since a separate
IAV section is required for each distinct pair of values V•' l6(j) = ¼ 4 V*"(j-s+ )
(i,k), the totak number of required sections (each iden-
tical to Fig. 11) may be computed as Vt3(J") = 1/8 • V/• 4(j-s+l)

N - E I1(k)
14v k= - 2 ) which generalizes readily as

no

With 1(k) gi'ven by Eq. 34, 1'"1n) = ]/n0  , Vk• 4(j-s+ 1) (39)

NAV = (I-k+l) = 3U-11 (35) = 2,4,8,16
k- -,4,,8 j = n., (n.+ 1), (n.+2),.,

For example, if the scanning seeker has If the maximum and minimum values of in-scan
resolution index are denoted, respectively, as nmr and

I = 128 (36) nm.n, the number of delay elements in each IAV sec-

detector channels, from Eq. 35, it is found that tion (Fig. 11) is given by

NIAV = 373 (37) V = -I . (40)
I For the example of Eq. 21

IAV sections, each identical to Fig. 11, will be required.

More generally, the number of required IAV sections N 5, = (64/4) - I = 15 , (41)
may be simply estimated as I times the number of re-
quired cross-scan averaging stages. delay elements per IAV section are obtained. For this

The action of IAV is developed with reference to Fig. example, IAV provides outputs corresponding to the
11 as following five in-scan resolutions

v .4 
n = 4,8,16,32,64 . (42)

The number of required delay elements can become
SZ1quite large for IAV sections structured as per Fig. 11.

"ZZ Z1  
' For example, if instead of Eq. 42

n = 1,2,4,8,16,32,64,128, (43)

the number of delay elements per IAV section increases
from 15 to 127 in spite of the fact that the number

Vk)of in-scan resolutions has only been increased from
V11.80) V11,160) V 1,320) 5 to 8.

Depicted in Fig. 12 is an alternative structure for

Figure 11. Transversal filter realization of one section the lAV sections, modified from Fig. 11 to reduce the
of the in-scan averaging processor, lAV. Inputs to IAV required number of delay elements. The processing ele-
are provided by the cross-scan averager (XAV). A large ment labeled "A" in Fig. 12 is structured like the
number of such sections, operating simultaneously original lAV section, Fig. 11. Each of the boxes label-
and uncoupled, comprise the complete IAV. Output of ed "B" in Fig. 12 is an infinite-impulse-response (IIR)
IAV Is an array of reduced resolution images. Process- approximation to Eq. 39 for the appropriate value of
ing elements denoted as z- 1 are unit delays. Final 8 no.
delay elements and final summing node are not shown. Particularly simple fIR structures, shown in Figs.

29
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lin
V • VNN1 

[

Trnsversalv nfilter V k,4

Figur 14.io Ip~~aeraiaino nzFgr

(Fig. 11) A s k,8 to m
-V e Vi k,6) E

B+

,"H (z) II" Vik'•3

B >1n V1 k'no)

Figure 14. App,•-xlmate realization of Hnlz), Figure
a 13. Since n is a power of 2, both fixed gain amplifiers

t7 j vmz I - vk,128 are realizable as bit shifts.

Figure 12. MA section, modified to minimize the V .0 rr A
number of required delay elements. 

Vl,•1 -- frmXA

exp(-lln)

"Transversal filter I l

IA V sec tio n .,- - - V V k .4
(Fig .11) V?,

Detection

preprocessor
(Fig. 6)

>nV k'n) Vill"6(0)m

Figure 13 Suboptimal approximation of Hn(z) requlr-AIng just one memoryidelay element. T

IAV section V, 1a mr

13 and 14, require just one sample delay per filter func- (Fig. 11) V 028

tion, Hn(z). Following this approach, the IAV section U
corresponding to the eight in-scan resolutions given Figure 16. Alternative IAV structure.
by Eq. 43 can be implemented with just 18 delay
elements rather than 127 elements, as would be re-
quired by the original approach (Fig. 11) alone. ty involved in developing IIR approximations to Eq. I

Of course, the reduced number of processing 39 depends on the order of the IIR filter; procedures
elements achieved via IIR processing (Fig. 13) relative for designing IIR structures subject to design criteria
to finite-impluse response (FIR) processing (Fig. 11) appropriate to the present application are given in [23, U
is at the expense of reduced SNR. A relevant discus- Chap. 8] and 1241.
sion of this point is provided in [221. The SNR penal- Yet another approach to designing IAV sections to

I
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minimize the number of processing elements is shown S The image data am processed sequentially by col-
in Fig. 1. The components labeled "A" in Fig. 15 are umn; since scanned linear arrays acquire imagery
structured as per Fig. 11; the component labeled "B" sequentially by column, the proccivng approach
in Fig. 15 is structured like the detection preprocessor described eliminates the need to buffer large
(Fig. 8/Eq. 23), but modified for 16-fold resolution amounts of data; and
reduction and decimation-in-time. * The total processor comprises a large number

The development of a multi-resolution spatial filter of simple, identical, modules, operating in
array via the structure of Figs. 10 through 15 is an parallel, and thus appears inherently well-suited
original contribution of the work described in this to real-time applications.
report. Some virtues of this approach are that

3I
I

* I
* I
I

I I-
I
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3 8.0 THE PARALLEL DANK OF SPATIAL FILTERS

The multi-resolution filter bank is realized by con- The meaning of Eqs, "and 45 is explained with
catenating XAV and 1AV, as shown in Fig. 9. A single the aid of Fig. 16. As shown in the figure, the effect
input/output relationship for these two combined of image convolution with a rL'ctangular smoothing
filters is obtained by substituting Eq. 33 into Eq. 39,I with the result

, V',.4 _j_ I 443 jd~0(j) = (Il/kn) +., 1 (-r) (4

which may be written in a compressed notation asReud

- A4 Or~t~kA) Fine resolution im.e(k1

V1  IV~g)I image at output of detection be Interpreted as a mapping from a f Ine resolution Im-

preprocessor, Fig. 8 age (Figure left) to a reduced resolution Image (Figure

ot. N, I .ý'40() I redued esoutin iage right). The (IJ) - pixel value In the reduced resolution
_- IV~"'(J I~ = educd rsoltio inage Image Is obtained as the average of the pixel valueswith indices (k, 4"o) within a rectangular region (sheded box) of dimensions

kt x n. whoae upper-right-corner is located at the (II)
rect(k, n0) 2-D rectangle function, of dimen- - pixel location In the Input I rage. As shown In the

sions k X #I, and amplitude Figure, resolution *eduction produces some Image
(1 /kn0 ). shrinking.

I(a) Input imae" (c) A reduced resoiution (e) A reduced resolution (g) Reduced resolution Image,
(16i32)retengle Image at output of INV image at output of XAV convolution ketnol Matched
(k,n) -(11,11) (k,n) m(1,S02 (k~n) -(16,1) to target dimensions5 (kn) -(16,3Z

(b) Same data as (a) above (d) Some date as (c)eabove (f) Saeredataas (a)sabove (h) Sarmedate so(g) above

Figure 17. Rectangle test image, at original resolution, (a) - (b), and at 3 reduced resolutions, (c) - (h). Data
are prior to background subtraction.
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function is to perform a mapping from a fine resolu- filter output, shown bottom-left in Fig. 18, is found
tion image to a reduced resolution/smoothed image, to have SNR very nearly equal to (16 x 32) ' =
in which the (ij)-pixel value in the reduceo resolu- 16\/'2. Also shown for illustrative purposes in Fig. 18
tion image is obtained as the average of the pixel values is the effect of applying spatial filtering to a frigatewithin a rectangular region of dimensions k x n., silhouette. ,

whose upper-right-hand corner is located at the (ij)- as

pixel location in the input image.
The XAV / IAV spatial filter array was implemented vkn

as a FORTRAN program and exercised against several
simple test targets to confirm correct operation. Figure 16x32 Rectangle Frigate silhouette

17 depicts the results of one such simulation, show-
ing the appearance of a 16 x 32 rectangular test image (k,n) = (1,1)
at three reduced resolutions. Detailed numerical
evaluations of similar output images for bar and point
targets (for which the convolution products in Eq. 45 (1,32)
are exactly calculable) were used to verify correct func-
tioning of the FORTRAN simulation. U

To illustrate the SNR-enhancing effect of spatial (16,1)
filtering, white gaussian noise was added to the rec-
tangle test image to reduce the input image SNR (target aim,
contrast/RMS noise) to unity, i.e., (16,32) 1 |

SNRC = 1.
Figure 18. Muitiresolution processing enhances

The result is shown as the upper-left image in Fig. 18. SNR. Four images (left) are for rectangle Input image;
Numerical analysis of the images output from IAV in- four Images (right) are for frigate silhouette. Images
dicates that SNR is enhanced predictably as a func- at original resolution, having SNR = 1, are in the top
tion of spatial resolution. In particular, the (16,32)- row (rectangle Is top-left; frigate Is top-right).

I!
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9.0 BACKGROUND ESTIMATION AND SUBTRACTION (BES)

The need for background estimation and subtrac- the null target hypothesis what the background would
tior. (BES) is explained with the aid of Fig. 19. The have been at each position j, (j), appears to be an
detection problem is conceptualized as being one- essential element in developing a threshold TU) for
dimensional in Fig. 19 to simplify the discussion. targe, detection against spatially varying backgrounds.

Figure 19 depicts a target of size y pixels observ- Equivalent to Fig. 20, the detection process can be
ed against three types of backgrounds, viz., a cons- conceived as being accomplished in two stages, viz.,
tant background of unknown intensity (part a); a background estimation and subtraction (BES)
background of constant but unknown intensity gra-
dient (part b); and a "slowly varying" background Cj) = V(j)-B(j) , (46)
(part c). Successful detection requires that the pro-
cessor establish an intensity threshold, T(j), that rides followed by threshold detection
above the unknown and possibly varying background,
B(), by a fixed intensity offset, Q. C(j) < fi (47)

Figure 20 depicts a conceptual means for
establishing the threshold and accomplishing detec- A process analogous to Eq. 46 is separately applied
tion as per the examples in Fig. 19. Estimating under to all waveforms, i.e.,

c, QU) = Vj"w - B'(j) (48)

" Offset T), Detection threshold as shown in Fig. 9.
A number of candidate filters for developing the

Init background estimate, B, is discussed next.
va) "Assuming that the direction of scan is parallel to

a S), Background the horizon, the background estimate may be
j, Azimuth angle developed as

(pixels h11)= nu-nu) .(49)
b) TO) B (

BJ) In the event that the background level is found to
VO) -•.•.4 tcontain appreciable variation over in-scan angles 2 no,

an alternative background estimator is

a b

Offset, 01

C)

TO) Ded) Background
)Detected Background estimate +

Intensity estimator +mE
Vo ) Threshold, TO)

No
V•s ,No detection

Figure 19. Examples of 1.D detection problems i- yes
lustrating the need for BES. Part a), target oi dimen-
sion y's (pixels) In constant background. Level 'a' is Detection
unknown. Part b), taroet embedded in constant slope
background. Background parameters 'a' and 'b' are Figure 20. Conceptual signal processor for Im-
unknown. Part c), target observed against slowly vary- plementing threshold detection as per Figure 19
Ing background. examples.
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(50) Var[C?" (j)] = I .,, + Var[B,"(j)] (54) W0 1j = " w k (j - S / ) I• ' '" j Wn/ ) i 2

It follows from Eqs. 49 and 50 that, for both of these
The image areas ("windows") used by the background estimators,

background estimators, Eqs. 49 and 50, are depicted
in Fig. 21. The "window gaps" in Fig. 21b, 3eparating Var[B7"(j)] = utk, (55) I
the background windows from the target window, are
intended to prevent target self-thresholding (with a con- Thus, from Eqs. 54 and 55,
sequently degraded SNR) when the target's in-scan ex- I
tent, y,, over-spills the target window; i.e., when Var[ Ck,,(j) = 2a&k,, ,(56)

ncr < -y, 2noi . (51) i.e., for both background estimators considered thus
far, the differencing process used to develop estimated

The variance of a random process X(t) is denoted as contrast degrades two-fold the variance of the

waveforms.'
Var (X) = E I [X- E(X)I]2 , (52) A relatively less noisy contrast can be developed by

using a larget background window; e.g., Il
where El" ) indicates expectation over sensor noise

statistics. ,,kit k V .2,, j- n(
For spatially uniform backgrounds, specifically ex- 

I (j) = V, (-3nu/2) (57)

cluding the possibility of a target in the scene, we define depicted in Fig. 22. It follows from Eq. 57 that

k= Var[ Vi (j)I o (53) Var[B(j)] (58)

whert the presumed lack of dependence of i and from Eqs. 58 and 54 that
is discussed below.

Since Vk'"(j) is statistically independent of ,hi(J) Var[Cjk"(j)] = 1.a,2 . (59)
for all background estimators of interest, it follows k

from Eqs. 48 and 53 that Comparing Eqs. 56 and 59, we see that the background

estimate provided by Eq. 57 results in a lower-noise

Origin of coordinates contrast estimate.
The use of larger background windows (e.g., Fig.

a) 122) provides improved acquisition performance against) unstructured backgrounds at the expense of reduced
Sperformance against structured ("cluttered")

VI kn-nu) VkU)(agt)k backgrounds. The trade-offs involved in selecting the
MRSI background estimator window dimensions are

n ' in many respects analogous to those encountered in
designing signal processors for detecting spatially

X1 ur.resolved targets, commonly known as infrared
search and track (IRST) devices [25].

V kjW2-5)nu( Vk~ni25u14) k-

k- nI2 .4.n" n " h244n12" V. +"n(j-3nu/2) IVkn(J)(target?) k

Figure 21. Image areas used by two background
estimators. Part a) corresponds to Eq. (49); part b) cor-
responds to Eq. (50). Cross-channel (x) dimensions are Figure 22. Image area used by low-noise background U
In channel units; In-scan (s) dimensions are In dwells, estimator, Eq. (57). Scan direct~on (s) Is parallel to the
Scan direction (s) Is parallel to the horizon, horizon.

I
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* Developing the background estimate for parallel- Continuing the example that led to Fig. 17, Fig. 25
to-horizon scanning via Eq. 49, 50, or 57 imposes an depicts a rectangular test target as seen at four resolu-
additional memory requirement beyond that already tions, after background subtraction. The images in Fig.
required by IAV. 25, like those in Fig. 17, are noise free.

Assuming that the direction of scan is perpendicular
to the horizon, the background estimator analogous
to Eq. 49 is

U Vkn i3B,'!(J) = i'+k • (J) (60) Origin of coordinates

Image areas relevant to Eq. 60 are depicted in Fig. 23. x -1 -k I-I Analogous to Eqs. 50 and 57, one now has for cross-
horizon scanningkn ) ....~) vk ....

A W = -2 U) +V - i+3k/2(j)1/2 , (61) -•---[ Vi'k'() V'nJ (target?) INu

and _F I

ikn (j) = vk (J). (62)

Developing background estimates for cross-horizon Figure 23. Image area used by background estimator,
scanning via Eq. 60, 61, or 62 imposes no additional Eq. (60), for scan direction (a) perpendicular to the
memory requirement beyond that already required by horizon.
IAV.

It should be noted that the need for implementing
background suppression processing, and the likely ac-
curacy of any particular background estimator, is en-
tirely dependent on the spatial structure of the ocean's
thermal emission. The ýea radiance is generally a func-
tion of many variables, including wind speed, sea
height, nadir angle of the viewing line-of-sight, viewer's
height above water, cloud cover, sunglints, and sur-
face slicks [26].

In the processor simulation (App. A), the
background estimator described by Eq. 50 and Fig. Scan line through
21b, performing lin-ar trend removal from the background Is 'tilted'

background, was chosen. Linear (or nearly-linear)
trends may be caused by instrumental effects as well
as by true thermal gradients in the scene. Intensity

Figure 24 provides an example of a measured ther-
mal image in which the sea background appears to
display a nearly linear trend with azimuth. It cannot
be said with certainty whether the trend observed in 200
this data is due to an instrumental effect or scene ther- Pixel
mal variation. Also, the magnitude of the apparent
change in background level from one end of the scan Figure 24. Measured thermal Image of a ship observ-
to the other is, in this case, still much smaller than ed against a sea background, In which a scan line
the ship's contrast (cf. Fig. 32, top). through the bankground shows a neady linear trend.
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(a) (k,n) = (1,1) (c) (k,n) = (1,32) (e) (k,n) = (16,1) (g) (k,n) = (16,32)

JHJ

(b) Same asl (a), above (d) Saime as (c), above (f! Same asl Ce (e)bove (h) Same as (g), above li

(311.10) C1
1.32(j) C1 

1 '1U) C 16'U32()

Figure 25. Continuation of example from Figure 17, depicting rectangular test target at 4 resolutions, after

background subtraction.

I
to

3

I
I

I
U
U
U

II
381

__M

___________________



P" THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

10.0 THRESHOLD/DECISION (TD) AND NOISE ESTIMATION (NE)

Threshold/decision processing (TD) currently im- TD can be modified simply to accommodate multi-
plemented in the simulation software (App. A) is based pie target detections within a large field-of-view by im-
on performing a forced-choice detection in each frame. plementing Eq. 63 as a search for local maxima in
Thus, rather than perform the threshold comparison W(j) - so long as the various targets ire spatially well-
indicated in Eq. 47, our TD processor takes the form separated in azimuth.
shown in Fig. 26. Each contrast image The action of the noise estimation (NE) component

of Figs. 9 and 26 is discussed next. The purpose of
NE is to establish estimates for the noise variances

ka defined in Eq. 53.
is normalized with respect to a noise standard devia- The root-mean-square (RMS) noise levels of the in-
tion, ak n to obtain a "signal-to-noise image". The en- dividual cross-scan channels are denoted as
tire set of normalized contrast images is then examin-
ed for a global maximum to provide the forced-choice U i = 1,2,.... 1
detection. No image storage is required to implement
TD, since the search for the "brightest pixel" is per- where a, is the RMS value of ar additive noise com-
formed one column at a time. As a practical matter ponent of waveform V, (j), a2 corresponds similarly

to V2(j), etc. Assuming that the noise level is about
max [C•kn (j)] = max W~ j) , (63) the same for each channelSij~k,n, j

is calculated, where aj - a, , i=1,2,...,I , (65)

W(j) = max [C&"U)] (64) and that the additive noise is signal-independent,
i~k,n i

The "high data rate" part of the search process is con- ,oila Vi= 0 , (66)
tained in Eq. 64. For the set of 13 spatial resolutions
given by the example of Fig. 6, and assuming that the the RMS noise of waveform Vk"k(j) at the output of
seeker has I-=128 detector channels (as per Eq. 36), IAV is given by
it can be shown that Eq. 64 implies that, at every fourth
sampling instant, TD must find the largest of N,. k,, = oa (kn)" (67)
values, where

If the different cross-scan channels have appreciably
N = 41(2) + 51(4) + 41(8) different noise levels, invalidating Eq. 65, it may then

be desirable to include a noise calibration mode in the
with 6(k) given by Eq. 34. Thus, implementation signal processor. This entails illuminating the focal
Eq reqpires that on every fourth sampling instant, s uniformly (esg., by staring into the radiant source
TD find the maximum of 1617 data values, used also for dc-restoration), and then using the sample

variance of Vik'() as an estimate for Cr2,(i). The
RMS noise, a,,, in Eq. 67 is then replaced by ak,(i).

The possibility of implementing a noise calibration
mode (as an aiternative to implementing a "hardwired"INoise estimator [calibration, Eq. 67), is indicated in Fig. 9 as a dashed

SParameters describing connection between IAV and NE. Our software simula-
ok, r ced-ehoice detected object tion (App. A) does not in fact use Eq. 67. At some

Cfn)Posdetctiiotn, ('a'l) expense in execution time, the simulation prior to eachmax [Ck'nJ)Iak,nj S•i o) forced-choice detection executes a calibration run
,J,k,n .average contrast, Co against a noise-only frame, calculating values of o0.,

as sample variances, rather than by using the closed
Figure 26. Thresholdidecision %TD) logic for forced- form expression, Eq. 67, that is valid only for white
choice detection, noise.

I
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11.0 PROCESSOR SIGNAL-TO-NOISE MODEL

Table 2
In this section, we complete the simple processor Contribution of quantities A and B, from Fig. 27, relevant

signal-to-noise model (cf. Eqs. 1, 13, and 19) to calculating PSI and ISI SNR performance

G NPIx (70) Signal RMS( ' - a Enhance- Noise SNR

shAipR cr3) Processor ment Increase Gain (G)

by showing that the choice in Section 5.0 of rectangular Perfect Synchronous Npjx Nlp'x Npx
rmsponse functions provides a simple geometrical basis Integrator (PSI)on which to calculate the "processor efficiency" q. Imperfect Synchronous A (kn)½ A/(kn)'A

The geometry of the calculation is depicted in Fig. Integrator (ISI)
I27, in terms of two locally defined quantities, A and

B, defined as follows:

* A = number of target pixels within a rectangular
region of integration n = G(ISI)/G(PSI) = A/(kn • Npix) .(71)

B = number of background/non-target pixels Equation 71 is the desired expression for processor
within the rectangular region of efficiency, tj, which, taken together with Eq. 70, com-
integration. prises what we call the processor SNR model.

The contributinns of quantities A and B relevant .We illustrate the application of Table 2 and Eq. 71
to calculating PSI and ISI SNR performance are given with an example, in which it is assumed that the target
in '"able 2. For example, the increase in RMS noise is dimensions are one pixel in elevation and m pixels in

always equal to the square root of the number of pix- azimuth and that each of the m target pixels has the
els within the area of integration, which for PSI (i.e., same brightness. Also, we uniquely define an integer,
perfect) processing is simply the ship's area (defined no, in terms of m, as
in Eq. 70 as Nplx), and which for ISI (i.e., imperfect) (72)
processing is the area of the rectangular response n - m < 2nolo foEq
function, where n. is an integer power of 2. It follows from Eq.

kn = (A + B) . 72 that the MRSI processor will estimate the target's
length as being either n, or 2n. pixels, depending on
which of the (k,n) = (1,no) or (k,n) = (l,2no)

The third column in Table 2, SNR gain (G), is ob- filter output amplitudes is largest. The entries in Table
tained simply as the ratio of the entries in the first and 3 are calculated from the second row of Table 2 (ISI),
second columns. by setting k= 1 and A =n. (when n=no) or A =m

The processor efficiency, il, is calculated by ratio- (when n = 2no). The processor gain, G, is obtained
ing the third column entries from Table 2, from Table 3 as

(n) = max G(n) = max[n' ", m/(2n.) ],(73)Filter Shi prfl

response
function where mh is an initial processor-derived estimate for

_target size.
V It follows also from Table 2 (first row, last column)k _ that

n G (PSI) = W, (74)

Figure 27. Geometry for calculating procoosor effi- Taking the ratio of Eqs. 73 and 74, we obtain the pro-
clency, %, entering into Eq. (70). cessor efficiency
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Table 3 some results of which are plotted in Figs. 28 and 29.

Quantities relevant to calculating MRSI processor SNR The SNR gain, Fig. 28, has a step-stair variation U
gain (G) and efficiency (ii) for the example discussed with target size, intervals of constant gain alternating
in connection with Eq. 72. Quantity A is defined as in with intervals of constant slope. The breakpoints in
Fig. 27. Fig. 28 may be calculated by setting equal the quan- -

q tities G(no) and G(2no) from Table 3

n'11 = m/(2no)' I, no = 1,2,4,8,16,...
no n. n," (no/m)j- rn

2n, m m/(2n0• (m/2no),,' Thus, the Fig. 28 breakpoints occur at non-integer
values of m, denoted by m,, and given by

m, = 2"-`4, r = 1,2,3,4..... .. (76)
-- ( =G(,)/m (75) Using vertical bar targets in Gaussian noise, we have

validated Eq. 73 using the MRSI simulation provid-

where the quantities v (n) are given in Table 3. ed in App. A. In performing this simulation, we used I
This example, Eqs. 72 through 75, is developed an input SNR of unity, SNRc = 1, and an elevation

numerically in "lUble 4 for target dimensions field-of-view of I =64 pixels. Estimating the SNR gain,G, as the average value of 64 values obtained for the

i s m f 32, array of 64 elevation channels, the results appear ex-
actly as shown in Fig. 28; i.e., the gain values obtain-
ed fronm Eq. 73 and those obtained via simulation are
indistinguishable on the scale of Fig. 28.

5.0 I I I

4.0- 1.00 Itm

03.0- .95-

Z

S2.0 0.90-

1.0/ 0.85

mI m 2  m3  rn4

i I I ii 0.8o
¶ 5 10 15 20 1 5 10 15 20

m m
Target Size Target Size

Figure 28. SNR gain from Table 4. Solid curve, G(PSI) Figure 29. SNR efficiency, from Table 4. Theoretical-
= m"'; dottel values, G(ISI) from Table 4. Values of ly perfect performance corresponds to I = 1.
breakpoints m, given by Eq. 76.
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Table 4
Calculation of MRSI processor gain (G) and efficiency (•) as a function of
target size (m) for the example discussed in connection with Eqs. 72 throughI 75

m no 2no max{ no , m/(2no)'-} = G(ISI) vi=G/m- ,

1 1 2 1.0 0.71 M1.00 1.00 1
2 2 4 1.41 1.00 1.41 1.00 2
3 2 4 1.41 1.50 1.50 0.87 4

4 4 8 2.00 1.72.0.8200 141 2.00 1.00 4I5 4 8 2.00 1.77 2.00 0.88 4

6 4 8 2.00 2.12 2.12 0.87 8
7 4 8 2.00 2.47 2.47 0.94 8
8 8 16 2.93 2.00 2.83 1.00 8

10 16 2.83 2.25 2.83 0.I9
10 8 16 2.83 2.25 2.83 0.89 8p11 8 16 2.83 2.75 2.83 0.85 812 8 16 2.83 3.00 3.00 0.87 1613 8 16 2.83 3.25 3.25 0.90 16

14 8 16 2.83 3.50 3.50 0.94 16
15 8 16 2.83 3.75 3.75 0.97 16
16 16 32 4.00 2.83 4.00 1.00 16
17 16 32 4.00 3.01 4.00 0.97 16
18 16 32 4.00 3.18 4.00 0.94 16
19 16 32 4.00 3.36 4.00 0.92 16
20 16 32 4.00 3.54 4.00 0.89 16
21 16 32 4.00 3.71 4.00 0.87 16
22 16 32 4.00 3.89 4.00 0.85 16
23 16 32 4.00 4.07 4.07 0.85 32
24 16 32 4,00 4.24 4.24 0.87 32
25 16 32 4.00 4.42 4.42 0.88 32
26 16 32 4.00 4.50 4.50 0.90 32
27 16 32 4.00 4.77 4.77 0.92 32
28 16 32 4.00 4.95 4.95 0.94 32
29 16 32 4.00 5.13 5.13 0.95 32
30 16 32 4.00 5.3n 5.30 0.97 32
31 16 32 4.00 5.48 5.48 0.98 32
32 32 64 5.66 4.00 5.66 1.00 32
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12.0 TARGET SIZE ESTIMATION

Our main objective in developing MRSI was to find where
a means for SNR enhancement, and, at least for the
example of Section 11.0, it appears that this has been log2 A = W log, A, + (1 - W) log2 , 2 , (78)
achieved. Inspection of Figs. 28 and 29 shows that the
SNR gain achieved by MRSI is quite close to that and
achieved by the theoretically optimum perfect syn--
chronous integrator (PSI). W = -0.71 + 1.21 [G(mI)/G(mA)] . (79)

A second objective was to have MRSI develop an
estimate for target size, and in this interest, the cur- Quantity A in Eqs. 78 and 79 was previously
rent algorithm clearly needs improvement. Inspection defined by Eq. 73. Similarly, quantity m-2 is defined
of Figs. 30 and 31 shows that the target size estimates implicitly by

developed by MRSI can easily be 30% in error for the
previously discussed example. However, as discussed G(, 2) =AO min G(n) m rin [nt, m/(2n 4] .80)
in this section, it appears straightforward to develop
simple variants of the original algorithm that are
capable of providing greatly improved estimates for 40
target size. For example, we propose the following
refined target size estimator, appropriate for the

preceding one-dimensional example:S•=Int [r] , (77) 30-

ll . _

o 70.1 120-10

1- 01 0

SE -4o-

I /"

101015 2

Em

ITarget SizeIFigure 30. Initial estimate of target size, r5, from 1 5 10 1; 20

Table 4. Dashed line, rn - m, denotes theoretically m
Ideal performance, as achieved by the refined target Target Size

size estimator, Equations (77)-(79), In the limit of high Figure 31. Size estimate percent error, derived fromSNR. mnl values in Table 4, for the Initial target size estimator.
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The function Int [. in Eq. 77 denotes rounding of Continuing in Table 5 the numerical example begun "
its argument to the nearest integer value, in Tible 4, we find that the refined one-dimensional n

The form of Eq. 78 was suggested by the require- target size estimator provides in the limit ol high SNR
ment that a perfect estimate of target size; i.e.,

1082 ýl ; 1082 "' > log m2 . (81) tim M =m. (84) 1
SNR-•a

The coefficients (-0.71, 1.21) in Eq. 79 were derived Although it would be straightforward to now explore
by imposing the dual requirements via simulation the noise properties of our refined target ,

size estimator, such as the size estimate variance, this
m1 ,when G(tt 1 ) = \,2 G(A 2) , (82) has not yet been done.

and The preceding one-dimensional size estimation I
algorithm, Eqs. 77 through 79, can be readily extended
to the development of refined two-dimensional size

W = I/2 , when G(A,) = G(M 2) . (83) estimates as we!l. 5

Table 5
Continuation of the numerical example begun in Table 4. Refined estimate of
target size, in', is developed via Eqs. 77 through 79. Comparison of left-most and
right-most columns indicates that i = m, i.e., target size is correctly estimated
when signal-to-noise is high.

m m r n2 log2mI log2li12 G(Aii) G(zd) W 1-W "in in

1 1 2 0 1 1.00 0.71 1.00 0.00 1.00 1 a
2 2 4 1 2 1.41 1.00 1.0 0.00 2.00 2
3 4 2 2 1 1.50 1.41 0.58 0.42 2.99 3
4 4 8 2 3 2.00 1.41 1.00 0.00 4.00 4 i
5 4 8 2 3 2.00 1.77 0.66 0.34 5.06 5
6 8 4 3 2 2.12 2.00 0.57 0.43 5.94 6
7 8 4 3 2 2.47 2.00 0.78 0.22 6.87 7
8 8 16 3 4 2.83 2.00 1.00 0.00 8.00 8
9 8 16 3 4 2.83 2.25 0.81 0.19 9.13 9

10 8 16 3 4 2.83 2.50 0.66 0.34 10.13 10
11 8 16 3 4 2.83 2.75 0.54 0.46 11.00 11
12 16 8 4 3 3.00 2.83 0.57 0.43 11.88 12
13 16 8 4 3 3.25 2.83 0.68 0.32 12.82 13
14 16 8 4 3 3.50 2.83 0.79 0.21 13.83 14
15 16 8 4 3 3.75 2.83 0.89 0.11 14.83 15 U
16 16 32 4 5 4.00 2.83 1.00 0.00 16.00 16
17 16 32 4 5 4.00 3.01 0.90 0.10 17.15 17
18 16 32 4 5 4.00 3.18 0.81 0.19 18.25 18
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SHIP IMAGE DATA BASES

This section briefly describes the three ship image
data bases that have been used in numerical ex-
processor concept and a software implementation

(App. A). The three sources of ship imagery used thus
far include:

Figure I3. Measured ship thermal Image threshold.
* * NWC FLIR data, ed to displa what appear to be ac-coupling artifacts

* Mini FLIR data, and In front of and behind the ship, near the waterline.
* APL model silhouettes.

The NWC data comprise 7537 thermal images of thetically degraded. Since we had very little informa-
eight different ship classes, observed from the air at tion about either the sensor or the data reduction pro-
shallow depression angles, at aspects of 300 and 900 cess at the time this work was performed, and with
off-bow, for distances of from 6 to 20 nmi. As the data what appears to be AC-ceupling artifacts in some of
were obtained during a time of very good atmospheric the data (e.g., Fig. 33), we have made only limited use
visibility, the images consequently have -ery high SNR of these data thus far (cf. Section 14.1). It is our
and are not directly suitable for realistically testing the understanding that a second NWC ship image data
limits of signal processing methods for SNR enhance- set has been developed, containing images measured
ment. For these data to be used, they were first degrad- at lower SNR. Unfortunately, the low SNR NWC dataed with progressively increasing levels of additive noise, were not available at the time this work was performed.
as illustrated in Fig. 32.

Of course, much of the interest in working with these
data, stemming from the "real world flavor" of
measured imagery, is lost when the data are syn- •

S~~Original i"-
imagei,- Figure 3a. Ship IR Image digitized from mInIFLIRI Imaeanalog video.

SNR = 1.0 140 )

S N R =.2~ j ~ i130

110
Figure 32. High SNR image (top) measured under
unusually good atmosphere conditions is degraded
with progressively Increasing levels of additive noise 0 10,0 150 200 250
to simulate observations obtained during less Pixel

favorable weather. To the right of each Image is shown
a scan line obtained at the elevation Indicated by a Figure 34b. Scan line through the peak intensity pix-
horizontal arrow. el in the miniFLIR Image shown in Part a.
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A second source of ship thermal imagery was some 0 background structure (e.g., due to waves,
mini FUR analog video that became available via a reflected clouds, natural ocean thermal varia-
previous APL program. Several frames of this data tions, and slicks 1261),
were digitized by K. Constantikes (APL/FIF) for our * ship thermal structure (e.g., stack hot spots),
use. Since a number of important sensor characteristics * atmospherics,
and the environmental conditions prevailing at the time e ship's reflection in the water, I
of measurement were unfortunately not known, we * ship's wake, and
have made only limited use of the mini FLIR data (cf. * assorted sensor artifacts (e.g., AC-coupling,
Section 14.1). Visual inspection of the data, both "striping" due to uncompensated detector non-
analog and digital, shows the SNR to be only marginal- uniformities, vignetting, etc.). U
ly adequate for visual detection (cf. Fig. 34). These
data are therefore of at least qualitative interest, since, One consequence of these limitations, for example, is
once digitized, they can be used to exercise low SNR that the model silhouette data cannot be used to assess I
detection processing without first requiring synthetic the potential usefulness of thermal gray scale infor-
noise insertion. mation in assisting classification.

Our third source of ship image data, the APL model Certain real-world characteristics can be imparted
silhouette data base, was originally developed in con- to the model silhouettes via modeling. For example, U
nection with an earlier APL Independent Research and Fig. 36 illustrates how model silhouettes (three images
Development (IRAL) effort [5,281. The data were ac- at figure upper left) may be combined with ship IR
quired by digitizing TV images of scale models of five signature data (curve at figure upper right) that in-
ship types at 21 distinct aspects around the starboard corporate both ship thermal modeling [20] and a
bow quadrant for each of three simulated ranges (cf. statistical treatment of weather effects [121. Seeker sen-
Fig. 35). Thus, a total of 315 silhouette images is sitivity is described by the NEAT parameter (curve at
available (5 ship types x 3 ranges x 21 aspects). The figure lower right). Output from the image model is I
models were cast in lead at a 1:1250 scale, and are a set of images (figure lower left) having SNRs that

representative of ships at the waterline. The images reflect a wide variety of phenomenological
are noise-fre black/white silhouettes, digitized to 512 considerations.
x 512 pixels per image. It is pointed out in (51 that the model silhouettes

A wide variety of effects, some or all of which may appear well-suited to developing ship recognition
figure importantly in measured imagery, are obvious- techniques based on ship profile information, since
ly not present in the model silhouette data, viz., the ship profile may be substantially the same for IR

imagery as for TV imagery. Of greater interest to the
present application, it is noted that the well-controlled
measurement conditions for the model silhouettes

350* facilitate the development of curve fits for ship pro-
S-- 7,io 0" jected area Vs. viewing aspect. It is found that, with

relatively small error (cf. Fig. 37)

A•ka(9) 21 4750 sin 9 + 645 cos 9 carrier (85)
880 sin 0 + 90 cosG , frigete ,

00 over the range 7° < ° :s 900 (beam aspect), and i
2,1, nmi 30-

It follows from Eq. 85 that the processor SNR10 nmi Go. model. Eq. 70, can now be written as

.G(8,R) 9 {37.2q/R). [I(sie + 0.14 cs)/crB] ", carrier
Figure 36. APL model silhouettes are available for 5 (161i/R.). [(sine + 0.10 cm#)t/,-,I ". frigate 3
ship types, each observed at 21 aspect angles and 3
ranges 1281. (87)
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10 nml weor height, line-of-da,

B nmin10

2.8 nmin 0.1K 01T .

3MRSI Input framnes V1 1

50 nmin

32.5 nminto

-1SNR = (AT7NEAT)

3 Figure 3L Image model combines Idealized silhouettes (3 Images, upper left) and ship IR signature data. The
IR signature (curve, upper right) Incorporates both ship thermal modeling and a statistical treatment of weather
effects 1121.

over the range 78* <98 s 90 ',and, at smaller aspects For ilustrative purposes, we plot in Fig. 38 the varia-I tion of processing gain with range, as obtained from
G(O,R0 ) 91 G(7-, R.) ,00 5 8 :s 70 .(88) Eq. 87, for two aspects (90 *and 45*), against afrigate

target. In obtaining Fig. 38, a spatial resolution of a
We note that R. in Eq. 87 is range in nmi units, and - - 0.15 mr and a processor efficiency of q - I
(a, 0) are in mr units. are assumed.
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1000

(880 sin 6 + 90cos 25)

750 -

20S/ ~Model\.

500 - silhouette
.S15-

250 - 10

201 400 600 800 1000 4
Viewing aspect

Figure 37. Ship projected area vs. viewing angle ob- 4 6 8 10 12 14 16 18 20

tained from APL model silhouette Imagery ot a frigate Range (nmi)
(solid line). Curve fit (dashed line) was obtained
heuristically. Figure 38. Processing gain (G) vs. range, against

frigate target, from Eq. (87). Assumed spatial resolu-
tion is a =# = 0.15 mr; assumed processor efficlen-
cy is = 1.
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E M 14.0 RESULTS OF IMAGE-BASED SIMULATIONS

An image-based simulation of the MRSI processor A similar qualitative result was obtained by exer-
has been coded in FORTRAN (App. A). The simula- cising MRSI against a mini FLIR image of uncertain
tion operates on images of 64 x 256 pixels, at 35 spatial SNR (cf. Fig. 34). As shown in Fig. 40, in this case,
resolutions. The program runs, with minor changes, we ran MRSI in an experimental multi-pass configura-
on both the APL NAS mainframe and on an IBM PC tion, and, after three passes, were provided by MRSI
AT computer and requires about 450 kbytes of with a highly ship-like composite. The ship in this data
memory. The listing provided in App. A is for the IBM was observed at a range of about 10 nmi.
PC AT version of the code. All simulation results pro-
vided in this section (the results of more than 2800
processed images) were developed on an IBM PC AT.

314.1 INITIAL QUALITATIVE RESULTS Original Imag

Our first MRSI simulations against ship imagery Pass 1
were performed using NWC imagery, synthetically
degraded in SNR, as discussed in connection with Fig.
32. It was observed for these first simulations that cor-
rect detections and reasonably accurate size estimates Pass 2
were developed with input SNR values of 0.2. One of
the results of these early efforts is shown in Fig. 39,
in which a ship at 13.5 nmi range is correctly detected
and sized, for SNRC = 0.2. Pass 3

Original Image,
San Diego locale

Figure 40. Multlpass detection of low contrastSNoise E mInIFLIR Image provides shape Information. Original
image shown at top; composite product of 3-pass
detection shown at bottom. Range to ship is 10 nmi.

SNR = 0.2Simulated adverseatmosphere 14.2 PROCESSOR EFFICIENCY

MRSI algorithm The input images for the simulations described in
this section were various APL model silhouettes (cf.
Section 13.0), to which was added a small amount of
Gaussian noise to obtain

Forced-choice
detection SNRC = 5 (89)

Figure 39. Initial qualitative evidence of correct As discussed in connection with Fig. 26, the detected
simulation performance. Original high-SNR NWC ship targets are characterized by MRSI in .erms of five
Image (top) was degraded to SNR = 0.2 (center) to parameters, viz.,
simulate observatlon In a less favorable atmosphere.
Degraded Image was Input to FORTRAN simulation 9 position (i., j.),
(App. A) and the ship subsequently detected and siz- * size (ko, no), and
ed (bottom). Range to ship Is 13.5 nml. * contrast Co.
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In addition, as discussed in connection with Fig. 26 images was in the random number seed used in
and Eq. 67, the processor develops an estimate of the generating the additive noise. The results of these 120
noise variance, ak., for each spatial filter output. An trials are given in Fig. 41 as a plot of
estimate for the detection SNR, defined in Eq. 12, is
then obtained from the results of simulation as G = d I

ndel = Co/noo (90) as a function of the number of Monte Carlo trials.

However, from Eq. 13 2
20.0 __ _ __ _ __ _ I_ _ MI

=. PIl = (SNRd,,/SNRc) " "pI' . (91)

We obtain from Eqs. 90 and 91 the following estimate, 19.5 "
17, for processor efficiency

il* _Ný_IN 'dei 'lx = G0 N- 'x, (92)'ii = (SNR,/SNR')""PX= " l, (2
19.0 1

where SNRc (Eq. 89) and Npix are known a priori,and N is an output or the simulation.
Since Eq. 90 provides only an estimate for SNRd,, 1

we improve the estimate by performing each simulated 18. 20 40 60 so 1 1
detection a number of times (, ich time with a different Trials
random number seed) and then averaging over the Figure41. Estimated processing gain, as a function
resulting individual SNRd., estimates. of the number of Monte Carlo trials. The same IAlternatively, Eq. 71 and the position and size o h ubro ot al ras h aeE

estimnatrviedy, by.71and the simula tioni and se silhouette image was used In all 120 trials (frigate atestimates provided by the simulation, (io, j,) and (k,, 10 nmi, aspect = 900). 120 distinct Images were
n.), can be used to estimate n as created by adding to the noise-free ship image 120 dif- B

A / ferent noise Images.•z= A/(kon0 " Np ). (93)

Calculations of processor efficiency have been per- We surmised from this numerical experiment that
formed for 13 model silhouettes (Table 6). The first no more than 15 Monte Carlo trails are required to
series of Monte Carlo simulations was performed with develop an estimate for G accurate to within 5 or 10%
a very large number (120) of trials to obtain an estimate of the fully converged value. All consequent determina-
for how many Monte Carlo trials were needed to tions of q via simulation for the remaining 12 ship pro- i
achieve adequate convergence of the estimate for files listed in Table 6 were established as averages over
SNRde,. The silhouette image used in all 120 trials 15 Monte Carlo trials.
was a frigate profile, for range = 10 nmi, aspect = Estimates of processor efficiency for the 13 ship pro- I
90°; the only differentiating aspect of the 120 input files, obtained using Eq. 92, are provided in Table 7.Estimates of n based on Eq. 93 are given in Table 8.

Table 6 by The dispersion of j, values in Table 7 is bounded

Calculations of processor efficiency t have been per-
formed for 13 model silhouettes. I il - 0.82 1 < 0.08, (94)

Ship Aspect (0) Ranges (nmi) with mean and variance U
Frigate 10 5, 10 0.81 (95)

45 5, 10, 15
90 10, 20 Var(^j,) = (0.048)2

Carrier 10 10, 2045 20, 30 The dispersion of n2 values in lTble 8 is bounded by
90 20, 30

030I,-0.761 < 0.05, ()
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I ~Table 7
Processor efficiency, 7, Is estimated using Eq. 92 and results from Image-based
simulations, for 13 ship silhouettes. Each value of 6 In this table Is established
as an average over 15 Monte Carlo Iterations; thus, a total of 195 Images was pro-
ceased to obtain these results. Assumed IFOV = 0.073 mr

Ship Aspect (0) Ranges (nmi) NpIx

Frigate 10 5 479 16.77 0.77
10 139 9.32 0.79

45 5 1247 30.69 0.87
10 355 15.66 0.83
15 139 9.49 0.80

90 10 477 19.63 0.90
20 122 8.90 0.80

Carrier 10 10 702 20.66 0.78
20 175 10.00 0.76

45 20 434 18.14 0.87
30 182 10.66 0.79

90 20 555 20.24 0.86
30 248 11.82 0.75

Table 8
Processor efficiency for 13 ship profiles as estimated from Eq. 93

G(PSI) ,3(ISI)
Ship Aspect (0) Ranges (nmi) Np"' A/(ko no) ý6 A

Frigate 10 5 21.89 16.62 0.759
10 11.79 9.19 0.780

45 5 35.31 26.66 0.755
10 18.84 13.74 0.730
15 11.79 9.19 0.780

90 10 21.84 17.50 0.801
20 11.05 8.75 0.792

Carrier 10 10 26.05 19.49 0.748
20 13.23 9.72 0.735

45 20 20.83 16.18 0.777
30 13.49 10.25 0.760

90 20 23.56 18.03 0.765
30 15.75 11.23 0.713

with mean and variance - 0.8, (98)

9E(2 ) = 0.76 (97) accurate to about ±10%, for frigate and aircraft car-
Var(•2 ) = (0.025)- . rier profiles, observed at ranges from 5 to 30 nmi, and

for aspect angles from 100 to 90 .
Based on a total of 195 Monte Carlo simulations The rather remarkable invariance of 71 with respect

with 13 different ship profiles, the efficiency of MRSI to ship type, scale, and view'.ag aspect was perhaps
can be characterized as presaged by our earlier analytically derived results for

5
53



THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

bar targets, Fig. 29. In a speculative vein, we note that files. Testing the generality of this hypothesis would,
the bar target results car. be summarized as however, clearly require more simulation and analysis

than presented in this report.
I7 -- 0.92 1 < 0.08.

Heuristically extending the bar target results to two I!
dimensions 1.0

21 (0.92)2 = 0.85, 0.8-

/
we get a result fairly close to E~q. 98./ .

14.3 THRESHOLD SNR FOR
FORCED CHOICE DETECTION 0.4 7 3

We explored systematically the variation of pro- u /
bability of forced choice detection (PD) with SNR for 0.2 d'
three ship profiles, involving 2500 Monte Carlo trials
(Table 9). For each ship profile, for each SNR value, 0 -____
100 Monte Carlo trials were performed; the relative 0.0
number of times the declared target overlapped the 0.1 0.2 0.3 SN 0A 0.5 0.6

true target was used as an estimate for PD'
Our results are presented in Fig. 42 as plots of PD Figure 42. Probability of detection (PD) vs. channel

vs. SNR, parametric in viewing aspect. Each of the SNR (SNRc). Frigate silhouette having range resolu-
25 data points in Fig. 42 was established via 100 image- tion product = 0.73 nmi-mr. Curves are parametric in
based simulations. viewing aspect: 0 = 900, = 4 5o, [ = 10t -

The data are replotted in Fig. 43 as PD vs. SNRd.,,

where SNRdt is given by Eq. 12 as

SNRde, = . SNRc " 1.0. 0 n*0  *

with an assumed value of 17 = 0.81. Also shown as 0.8
a solid line in Fig. 43 is a plot of the function o.U

PD(SNRd,,) = O(SNRdt - 2.8) (99) 0.6l

where CL

• (t) = (I/vr-Z) _f' exp(-t 2 /2)dt 0.4-

Interestingly, it has been found in psychovisual ex- 0.2-
periments performed with human observers of elec-
tronic displays that a 50% probability of detection _ __ _ /
against rectangular target images requires a "display 0.0
SNR" of 2.8 [4, p. 86). Equation 99 is, as per the 0 1 2 3 4 S e 7 8 9
discussion in [3, p. 1971, a curve fit to experimental SNRdet

data descriptive of human vision system (HVS) Figure 43. Detection probability (PD) vs. detection I
performance. SNR (SNRdet, defined In Eq. 12). Frigate silhouette,

The fact that the PD data for all three aspect angles (range x resolution) = 0.73 nmi-mr. Three symbol types
are nicely fit in Fig. 43 by a single universal curve sug- correspond to different viewing aspects: 0 = 900 ,
gests that PD statistics may be derived from the El = 450 E = 10' Solid line is an analytical curve
universal curve for a wide variety of ship target pro- fit to experimental psychovisual data, Eq. (99).
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* Table 9

Probability of detection statistics were accumulated as a function of SNR for a total
of 2500 Monte Carlo trials. Range • resolution product = 0.73 nmni • mr

Range of SNR Monte Carlo Trials
Ship Aspect (°) Np1 x SNR Values Increment Per SNR Value

Frigate 10 139 0.15-0.60 0.05 100
45 355 0.15-0.60 0.05 100
90 477 0.20-0.60 0.10 100

5
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15.0 SYSTEM CONCEPTS FOR CUED DETECTION AND ATR

As discussed in Section 1.0 the current study was cing initiated by a human operator. According to this
motivated by an interest in the antiship missile (ASM) concept, MRSI plays the role of a target "cuer", reduc-
application. In this section, we discuss some top-level ing the bandwidth requirements of the video link and
ASM system concepts in which the MP.SI processing unburdening the human image interpreter from the
approach could be employed, need to perform visual search over a v. ide field-of-view.

Figure 44 depicts a tactical scenario in which an Figure 45 depicts an alternative system concept in
ASM has been launched in the general direction of which classification is performed on-board the missile
a hostile surface force, with the problem of target selec- by an autonomous target recognition (ATR) algorithm.
tion to be addressed post-launch. The missile seeker A potential problem with both' sy~tem concepts is
acquires a first candidate ship target, which is subse- that the seeker's acquisition range is likely to be much
quently classified as ineligible for attack. The ASM greater than the range at which arurate classification
continues its flight, and, as depicted ia Fig. 44, ac- can be performed, since classification both by eye and
quires a second ship, which it classifies and engages by ATR is likely to have far more demanding SNR re-
as a high-priority hostile combatant. quirements than the MRSI acquisition algorithm.

The initial pre-acquisition surveillance performed Although the ASM could sirriply fly toward each
by the ASM seeker is presumably performed over a potential target until the SNR grows large enough to
field-of-view much larger than that of typical thermal permit classification, this approach could result in the
imaging systems and TVs. The initial target acquisi- waste of considerable fuel capacity.
tion could be performed by MRSI processing, which A second, more satisfactory, splution to the acquisi-
then directs the seeker's further attention to the tion/classification SNR misnmtch problem has been
neighborhood of "objects" requiring classification, suggested by W. J. Tropf (APL). Following MRSI ac- I
Thus, the MRSI processor is followed by a classifica- quisition, the seeker could be directed into a "classifica-
tion processor that makes a series of judgments regar- tion mode, in which scan is performed very slowly
ding the nature of each object, viz., ship/non-ship; over a very narrow field-of-view in the neighborhood
combatant/non-combatant; hostile/friendly; high of the potential target. The reduced angular rate-of-
value/low value; etc. Two system concepts for scan, combined with a proportionally reduced post-
classification will be described, detector-amplifier electrical bandwidth, then provides

Figure 44 shows a system concept in which video the SNR boost required for classification, without
is telemetered from the ASM to an aircraft, where sacrificing spatial resolution.
target classification is performed and attack sequen- For example, the classification mode may be per-

Reacqulrelclaaslfylattack Reacquirelclasstfylattack

I ~~~On-board processing ~ "~

- -. •--- Reference ImageSmage -- - -

Commercial - ommercial

' Acqulrelclasslfyldlsengage ,7 AcquIrelclass1fy/dlsengage

Figure 44. ASM attack scenario, depicting system Figure 45. ASM attack scenario, depicting system
concept In which target acquisition Is performed by concept in which target acquisition is performed by
MRSI, and target classification Is performed off-board MRSI and target classification is performed by on-
by a person Inspecting cued images transmitted via board ATR.
video link from the ASM. 5
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formed with an angular rate-of-scan 25 times slower standpoint of satisfying Nyquist's criterion and preser-
than the acquisition mode, ving spatial detail. Consequently, the A/D process can

be followed by a pre-classification processor con-
6¢ = 6/25 , figured as per Fig. 8 and Eq. 23, in which the data

are smoothed and decimated-in-time 25-fold, with a
where 6 was defined previously in connection with Eqs. consequent 5-fold SNR gain.
25 and 27. If the detected waveforms are sampled at The cued slow-scan classification mode is potentially
the same rate during slow scan (classification mode) useful to both system concepts, Figs. 44 and 45, i.e.,
as during fast scan (acquisition mode), the data dur- regardless of whether classification is performed by
ing slow scan will be over-sampled 25-fold, from the ATR or by a human.
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16.0 A NOVEL METHOD FOR CLOUD CLUTTER SUPPRESSION

Cloud reflections in the water are the most intense ty" measure derived from correlation with the sky
natural source of sea surface thermal structure [261, measurements.
and are consequently expected to offer the most severe The mechanization of our cloud clutter discrimi-
source of false alarms to this (and other) ship IR detec- nant is simplified by making use of the fact that a
tion schemes. In this section we present a no- el method cloud's contrast against the sky is generally several hun-
for suppressing false alarms induced by cl3ud reflec- dred times greater than the contrast of the cloud's
tions from the sea. reflection against the sea. For example, we see from

Our new clutter suppression approach entails cor- Fig. 46 that cloud/sky contrast is about 50 K, while
elating MRSI detections obtained below the horizon the reflection/sea contrast is only about 0.1 K. In ad-
(due either to a ship or a cloud reflection) with detec- dition, since there is no particular benefit to be deriv-
tions obtained above the horizon at the same azimuth: ed from spatially resolving the fine details within the
the presence of cloud structure above the candidate cloud structure, the sky radiance data may be acquiredtarget's location indicates a likely false target, while by means having greatly reduced resolution relative tothe absence of clouds indicates a likely true target. the means used for detecting ships against the ocean

We illustrate the method with the aid of Fig. 46, background. In Table 10 we compare approximate sen-
depicting the spatial variation of sky radiation sitivity and spatial resolution requirements for cloud
temperature (top) and sea surface radiometric detection with corresponding requirements for ship
temperature (bottom), as measured at 10.6 gm, in the detection.
presence of clouds. These data were measured by As a first implementation possibility, we consider
JHU/APL with a calibrated dual-band IR radiometer obtaining sea/ship radiance data on a forward scan
installed in a Navy P-3 aircraft [26). For example, the in azimuth, and sky/cloud radiance data on the
sea surface thermal artifact labelled A' in the lower backscan. In this case, the backscan is stepped upwards
trace is clearly indicated as a cloud reflection, since in elevation, and executed at a greatly increased angular
it correlates directly with thermal structure observed rate-of-scan, relative to the forward scan. Considerable
above the horizon, i.e., the artifact labelled A in the image smear is tolerable on the backscan, due to the
upper trace of the figure, relaxed spatial resolution requirements for the skyThe vector of attributes attached to each MRSI measurements (cf. Thble 10). Moreover, if necessary,detection (cf. Fig. 26) can be augmented with a "quali- excessive smear can be prevented simply by widening

20 the post-detector electronic passband; the consequent
B .increase in noise is accomodated by the relaxed sen-

0c A sitivity requiiements during the bacirscan (cf. Ibble 10).
2-I __ Relaxed spatial resolution requirements in elevation

Sc_ can be exploited as a reduction in signal processing
40 _ requirements during the backscan. This is accomplish-

g 22.7 _- ---- • (say, of five each), to obtain a single reduced-resolution

B22.6 A' Bvideo channel for each group.

Table 1022.4_ Sensitivity and spatial resolution requirements for
- 4 e 16 2ship detection and cloud/clutter detection (approx-

Distance (kin) inate values),

Figure 46. Spatial variation of sky radiometric Ship Detection Cloud Detectiontemperature (top) and sea surface temperature (bottom)
measured by APL at 10.6 Am, In the presence of clouds Field of Search Below horizon Above horizon
[261. Sea surface artifacts labelled with primed letters
In the lower trace are reflections of cloud structures Sensitivity, NEAT 0.1 K 5 K
labelled with corresponding unprimed letters in the up- Spatial Resolution 0.2 mr, square I mr, square
per trace.
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A second implementation possibility is to perform the upper part of the focal plane.

the sea and sky measurements simultaneously (i.e., on Yet a third implementation possibility is to perform
the same scan) by having a partitioned focal plane: the sky search with a separate telescope The telescope

used for below-horizon search, and much larger detec- 0.5-1 inch in aperture.
tors at the top of the focal plane are used for above- Finally, additional sensor concepts for nearly
horizon search. The optics design for this sensor con- simultaneous sky/sea search can be based on cross-
cept is complicated by the requirement for wide eleva- horizon scanning (discussed briefly in connection with
tion instantaneous field-of-view. However, this problem Eqs. 60-62). The principal penalty imposed by this ap-3
is partially ameliorated by the fact that a considerable proach is a relatively complicated scanning mechanism,
degradation in the optics blur can be tolerated over compared to seeker heads that scan in azimuth.
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5 17.0 CONCLUSIONS

A signal processing algorithm (MRSI) has been The principal simulation results are plots of detec-
devised to maximize the detection range of imaging tion probability (PD) vs. SNR (Figs. 42 and 43), bas-
IR seekers against ship targets. The algorithm corn- ed on 2500 image-based Monte Carlo trials. A curve
prises a bank of two-dimensional spatial filters, hay- fit to the numerically-developed probabilities of detec-
ing rectangular kernels matched to targets of various tion appears to provide a universal curve that can be
aspect ratios and sizes, implemented in a separable used predictively for ships of differing class, observ-
form that appears well suited to processing in real-time ed at a variety of aspects and distances. Interestingly,
image data acquired sequentially by column. The per- the curve fit to MRSI/Monte Carlo PD results coin-
formance of MRSI has been studied analytically for cides with a previously published curve fit to data ob-
simple bar-target-in-noise images and studied tained from visual detection experiments performed-

numerically via simulations performed an a number with human observers of TV displays (31.
of measured and simulated ship images. Section 15.0 describes two ASM system concepts,

The SNR gain provided by MRSI (relative to hot- distinguished by the means of target classification, viz.,
spot detection) can be estimated as classification performed on-board the missile by an

ATR algorithm or off-board by a person inspecting
imagery telemetered from the missile. Using MRSI to
cue a slow-scan/high sensitivity "classification mode"

results in substantial predicted improvements for both
where NpIx is the number of pixels occupied by the system concepts.
target in the image, and q = 0.81, + 10%. The pro- In Section 16.0 we present a new method for sup-
cessor efficiency, il, is remarkably invariant with respect pressing false alarms caused by cloud reflections from
to sensor/ship range, viewing aspect, and ship class, the sea surface.
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PROGRAM MRSIPCI
PRC 29 APRIL 1987 12:40 PM
REAL*8 DSEED
REAL*4 GAIN
COMMON /SEED/ DSEED,NSEEDS,ISKIP
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /GAYN/ GAIN(1000)
DATA RMS,BCKGND /1.0,100.0/

C
CALL RDINPT*C
NTNRS = 5
DO 400 ITNR=1,NTNRSITRIAL = 0
TNR = 0.05 + FLOAT(ITNR) * 0.10
TGT = BCKGND + TNR * RMS

C
DO 100 ISEED=1,NSEEDS
ITRIAL = ITRIAL + 1
DSEED = DSEED + 1.OD-03

C
C CREATE NOISE FRAME...
C

CALL GAUS(RHS)

CALL ADNOIS(0,1.)
C
C CALIBRATE MRSI USING NOISE-ONLY FRAME...

ITST = ISKIP * (ISEED / ISKIP)
IF(ITST.EQ.ISEED) WRITE(22,210)
CALL INIT(KK2P1)

DO 200 KK=1.KK2P1
CALL XAV(KK)IMKK = IM(KK)

DO 200 1 = 1,IMKK
CALL IAV(I,KK)
CALL BES(I,KK)
CALL NEI(I,KK)

200 CONTINUE
CALL NE2

C CALL SIGOUT

C CADDSIPRAIMAG TROSOISE FRAMPEE..

C
CALL ADSHIP(TGTBCKGND)

CALL ADNOIS(1,1.)

C USE MRSI TO LOOK FOR SHIP...
C

CALL INIT(KK2P1)
DO 300 KK = 1,KK2P1
CALL XAV(KK)
IMKK = IM(KK)

DO 300 I = 1,IMKK
CALL IAV(I,KK)
CALL BES(I,KK)
CALL TD(IKK)

300 CONTINUE
CALL TDOUT(TNR,GAIN(ITRIAL),ISEED)
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100 CONTINUE
IF(ITRIAL.LT.ISKIP) GO TO 400

C
C GENERATE SUMMARY OF SNR GAIN PERFORMANCE ...
C

CALL GOUT(ITRIAL,ISKIP)

C0 COTIU
210 FORMAT(5X,'BEGIN CALIBRATION PROCESS-)

STOP
C END

SUBROUTINE RDINPT
C
C**~ READS INPUT DATA

LOGICAL*1 TEMP(64,256)
LOGICAL*4 LSHIP(64,256)
INTEGER*4 ITEMP4(64,256) ,ISKIP
REAL*4 ARAYSHIP
REAL*8 DSEED
COMMON /SEED/ DSEED,NSEEDS,ISKIP
COMMON /XPARAM/ IMAX,KMIN,KMAX
COMMON /SPARAM/ JMAX,NMAX,JAVG,JDECU
COMMON /RAWFRM/ ARAY(64,256),SHIP(64,256)
COMMON /FILTER/ TS,FCO,NORDER,ISET
EQUIVALENCE (LSHIP, ITEM4P4)

READ(21 .105) DSEED ,NSEEDS ,ISKIP
WRITE (23,106) DSEED ,NSEEDS ,ISKIP

105 FORMAT(1X,D14.7,1X,I3,1X.I2)
106 FORMAT(lX,'DSEED=',D14.7,3X,'NSEEDS=',I3,3X,'ISKIP=',I2,/)I

C
DO 50 1 =1,64

50 READ(20,100) (TEMP(I,J) , J=1,256)3

DO 60 J=1,256
DO 60 I=1,64
LSHIP(I,J) =TEMP(I,J)I
SHIP(I,J) =ITEMP4(I,J) / 255

60 CONTINUE

C READ(21,110) IM4AX,JMAX,KMIN,KMAX,JAVG,JDEC,NMAX

WRITE(23,120) IMAX,JMIAX,KMIN,KMAX,JAVG,JDEC,NMAX
READ(21,115) TS,FCONORDER,ISET
WRITE(23,125) TS,FCO,NORDER,ISET

100 FORMAT(2(128A1))I
110 FORMAT(2(I3,1X),4(I2,1X),I3)
115 FORMAT(F9.6,1X,F7.1 ,1X,I2,1X,I2)
120 FORMAT(lX,IIMAX=I,I3,2X,3JMAX=I,I3,2X,IKMIN=I,I2,,2X,IKMAX=I,I2,2X,

+ 'JAVG=',I2,2X,'JDEC=',I2,2X,'NMAX=',13,/)I
125 FORMAT(1X,'TS=',F9.6,3X,'FCO=',F7.1,3X,'NORDER=',I2,3X,'ISET=',

RETURN
END-

C
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SUBROUTINE INIT(KK2Pl)

SC** INITIALIZATION FOR ROUTINES XAV & IAV
C
C** 'DO 300' LOOP PERFORMS DETECTION PREPROCESSING
C (BOXCAR INTEGRATION AND DECIMATION-IN-TIME)S~C
C INPUT (FROM RDINIPT):
C ARAY(I,J) I=1,2,...,IMAX
C J=1,2,...,JMAX
C IMAX,JMAX
C KMIN,KMAX MIN/XAX VALUES (CROSS-SCAN RESOLUTION PARKS.)
C JAVG IN-SCAN AVERAGING FACTOR I
C JDEC IN-SCAN DECIMATION FACTOR
C NMAX MAX. VALUE (IN-SCAN RESOLUTION PARAMETER)
C
C OUTPUT / DATA FRAME WITH IN-SCAN DECIMATION:
C V(I,J) J=1,2,...,JMAX2C

C OUTPUT / CROSS-SCAN AVERAGING PARAMETERS:SC KK INDEX FOR K(KK),IM(KK)

C = 1,2,3,...,(KK2+1)
C
C K(KK) CROSS-SCAN RESOLUTION PARAMETER
C = 1,2,4,8,.... ,KAX (POWERS OF 2)
C
C IM(KK) MAX. VALUE OF I FOR V(IJ)
C
C KK1 SMALLEST VALUE OF KK FOR WHICH CROSS-SCAN
C PROCESSING SHOULD BE PERFORMED
C
C KK2 NO. OF CROSS-SCAN AVERAGING STAGES
C
C OUTPUT / IN-SCAN AVERAGING PARAMETERS:
C NN INDEX FOR N(NN)
C =1,2,3,...,(NN2+1)
C
C NN2 NO. OF PARALLEL CHANN4ELS OF IN-SCAN PROCESSING
c
C N(NN) IN-SCAN RESOLUTION PARAMETER
C =1,2,4,8,...,NMA.X (POWERS OF 2)
C
C JMAX2 MAX. VALUE OF J FOR V(IJ)
CUC C------------------------------------------------------------------------
C INPUT COMMON BLOCKS (FROM RDINPT)

COMMON /XPARAM/ IMAX,KMIN,KMAX
COMMON /SPARAM/ JMAX,NMAXJAVG,JDEC
COMMON /RAWFRM/ ARAY(64,256)

C OUTPUT COMMON BLOCKS
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)

C
KK1 = INT(l.443*ALOG(FLOAT(KMIN)))
KK2 = INT(l.443*ALOG(FLOAT(KMAX)))

KK2PI=KK2+1
DO 100 KK=1,KK2Pl
K(KK) = 2**(KK-1)
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IM(RK) = IMAX - K(KK) + 1
100 CONTINUE
C

NN2 = INT(l.443*ALOG(FLOAT(NMAX)))
C

NN2Pl=NN2+1

DO 200 NN=I,NN2Pl

200 CONTINUE

C JAVGM1 =JAVG - 1

JMAX1 =JHAX - JAVGM1
JMAX2 =JMAX1/JDEC

XJAVG =FLOAT(JAVG)U

JDECM1 -JDEC - 1

DO 300 I=1,IMAX

C PERFORM IN SCAN AVERAGING ...

C ~DO 310 J=1,,JMAX1

SUM = 0.0
JPJ=J+JAVGM1

DO 320 JSUM=J,JPJ

SUM = SUM + ARAY(I,JSUM)I
320 CONTINUE

V(I,J) = SUM/XJAVG
310 CONTINUE
C
C PERFORM IN-SCAN DECIMATION..
C

JHOP = -JDEClI1
DO 330 J=1,,JMAX2I
JHOP = JHOP +JDEC
V(I,J) = V(I,JHOP)

330 CONTINUE
300 CONTINUEI

RETURN
END

C

SUBROUTINE XAV(KK)

CI
C** CROSS-SCAN AVERAGING PROCESSOR, KIK-SECTION
C

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2I
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /WORK/ TEMPi (64) ,TEMP2(256,7)

C IF(KK.EQ.1) GO TO 1001

IMKK = IM(KK)
KKM1 = KK - 1
DO 200 3=1,JMAX2

C
DO 300 I:1,IMKK
IPKH1 =I + K(KKH1)
TEMPI(I) =(V(I,J) +V(IPKM1,J)) /2.0
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300 CONTINUE
C

DO 400 I=1,IMKK
V(IJ) = TEMPI(I)

400 CONTINUE
"200 CONTINUE
100 CONTINUE

RETURN

END

c

SUBROUTINE IAV(I,KK)

C

COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /WORK/ TEMPI(64),TEMP2(256,7)

C
SDo 50 J = 1,JMAX2

VIKK(J,l) = V(IJ)
50 CONTINUE

C
C RECURSIVE FILTER INITIALIZATION: VIKK(N(NN),NN)
C

WNNM1 = V(I,1)
NN2PI=NN42+1
DO 100 NN=2,NN2Pl
SUM =0.0
31 1 + N(NN-1)J2 N(NN)

DO 200 J=J1,J2
SUM = SUm + V(IJ)3 200 CONTINUE

WNN = WNNMI1 + SUM
VIKK(J2,NN) = WNN/FLOAT(J2)
WNNM1 = WNN

100 CONTINUE
C
C RECURSIVE FILTER

UJM2MI=JMAX2-1
DO 300 NN=2,NN2Pl
NNN=N(NN)

DO 300 J=NNN,JM2M1
JP1 = J+l
JP1MN=JP1 -NNN
SUM = V(I,JP1) - V(I,JPlMN)
SUM = SUM/FLOAT(N(NN))
VIKK(JPI,NN) = VIKK(J,NN) + SUM

300 CONTINUE

RETURN
END

C
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C
SUBROUTINE ADSHIP(TGT,BCKGND)

C
COMMON /XPARAM/ IMAX,KMIN,KMAX
COMMON /SPARAM/ JMAX,NMAX,JAVGJDEC
COMMON /RAWFRM/ ARAY(64,256),SHIP(64,256)

DELTGT TGT - BCKGND
C

DO 10 J=1,JMAX
DO 10 I=1,IMAX
ARAY(I,J) = BCKGND + DELTGT*SHIP(I,J)

10 CONTINUE

RETURNI
END

C

C
SUBROUTINE GAUS(SIG)

C
C** CREATES A FRAME OF GAUSSIAN NOISE WITH A WHITE OR DIGITAL
C BUTTERWORTH POWER SPECTRUM.
C
C INPUTS REQUIRED:
C SIG = RMS VALUE OF OUTPUT FRAME
C DSEED = SEED FOR RANDOM NUMBER GENERATOR

C ISET = 0 , WHITE NOISE
C 1 , DIGITAL BUTTERWORTH FILTER (STEARNS)

C IF (ISET .EQ. 1) , ALSO NEED:
C
C TS = CMPLING INTERVAL
C FCO = 3 DB CUT-OFF FREQUENCY
C NORDER = FILTER ORDER
C
C OUTPUT: U
C GNOISE(64,256) = OUTPUT DATA FRAME
C NOTE:

C 1) DATA ARE WHITE IN THE FIRST COORDINATE AND BUTTERWORTH-
C FILTERED IN THE SECOND COORDINATE
C 2) ISET=l OPTION UNAVAILABLE ON PC VERSION 5

Co
C REAL*4 X(16384),Y(16384)

REAL*8 DSEED
COMMON /SEED/ DSEED,NSEEDS,ISKIP
COMMON /GSNS/ GNOISE(64,256) U
COMMON /FILTER/ TS,FCONORDER,ISET

DATA NR /16384/
SGENERATE WHITE GAUSSIAN NOISE.

C
cc CALL GGNHL(DSEED,NR,X)

CALL GGNML$(DSEEDNR)
cc
CC IF(ISET .NE. 0) GOTO 50
cc
CC DO 25 K=1,NR
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cc Y(K) = X(K)
CC25 CONTINUE
C GOTO 60

C APPLY BUTTERWORTH FILTER.

C
C 50CALCLAT STATISRTISFOF FILTERED DATA
C

C60 CALL STAT$S(Y,NR,YMIN,YMAX,YAVE,YVAR,YSIGMA)
CALL STAT$S(GNOISE ,NR,YMIN,YMAX,YAVE ,YVAR,YSIGMA,A,B)

C
C NORMALIZE THE OUTPUT DATA TO ZERO MEAN AND STD.DEV. ='SIG.'I C

C = SIG/YSIGMA
DO 100 3=1,256
Do 100 I=1,64

C N = J+(I-I)*256
C GNOISE(I,J) = C*( Y(N) - YAVE)

GNOISE(I,J) = C*(GNOISE(I,J) - YAVE)
100 CONTINUE

RETURN
END

C

SUBROUTINE ADNOIS(IOPT,TNR)

COMMON /XPARAII/ IMAX ,KMINK!'MAX
COMMON /SPARAII/ JMAX,NMAX,JAVG,JDEC
COMMON /RAWFRM/ ARAY(64,256)
COMMON /GSNS/ GNOISE(64,256)

OPT = FLOAT(IOPT)
DO 10 J=1,JMAX
DO 10 I=1,IMAX

ARAY(IIJ) = OPT * ARAY(I,3) + GNOISE(I,J)/TNR
10 CONTINUE

RETURN
C END

C
SUBROUTINE NE1(I ,KK)

C** NOISE ESTIMATOR - ESTABLISHES RMS VALUES OF THE WAVEFORMS OUTPUT
C BY 'BES(I,KK)' UNDER CLOSED-COVER CONDITIONS
C

REAL*4 X(1536)
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2ICOMMON /NUFRMS/ V(64,256) ,VIKK(256,7)
COMMON /SIGS/ SIG(5,7),XSUM(64,S,7),XSQR(64,5,7),XNU1I(64,5,7)

C
NN2P1 = NN2+1
DO 10 NN=1,NN2Pl
INN = 1/tNN
JSTART =2*N(NN)+INN

JSTOP =JMAX2-N(NN)-INN
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DO 20 J=JSTART,JSTOP

NI = NI+1
X(NI) =VIKK(JNN)

20 CONTINUE

CALL STAT$$(X,NI,A,B,C,D,E,XSUM(I,KK,NN) ,XSQR(I ,KK,NN)) i
XNUM(I,,KK,NN) =FLOAT(NI)

10 CONTINUE

RETURN

ENDC :
C

SUBROUTINE NE2

C*NOISE ESTIIIATOR (CONTINUATION OF 'NEl')

C
COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2

COM14ON /SIGS/ SIG(5,7),XSUM(64,5,7),XSQR(64,5,7),XNUM(64,5,7)
C

KK1Pl KK1+1
KK2P1 =KK2+1
NN2P1 =NN2+1

DO 100 KK = KK1P1,KK2Pl
DO 100 NN = 1,NN2Pl
XAVE =0.0 0
TSQR = 0.0
RTOT = 0.C
SIG(KK,NN) =0.0
IMKK = 111(1K)

C
DO 200 I = 1,IMKK A

XAVE =XAVE + XSUN(I,KK,NN)i
TSQR =TSQR + XSQR(I,KK,NN)
RTOT =RTOT + XNUM(I..KK,NN)

200 CONTINUE

IF(RTOT.LE.0.0) GC TO 100
XAVE = XAVE /RTOT
ASQR =TSQR /RTOT
VAR = ASQR -XAVE * XAVE
VAR =VAR *RIOT / (RTOT - 1.0)
SIG(KKNN) =SQRT(VAR)

100 CON4TINUE

C THIS IS A SHORTCUT, PROVIDING QUICK ANSWERS FOR WHITE NOISE...
C
cc RT2 = SQRT(2.)
cc Cl = 0.0
cc DO 300 NN = 3,NN2P1
cc c = ci+i1.0
cc C2 = RT2**C1
cc DO 300 KK KK1P1..KK2Pl
cc SIG(KK,NN) =SIG(KK,2)/C2
CC300 CONTINUE3
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RETURNU END

C
SUBROUTINE SIGOUTI

C*PRINTS OUTPUT OF SUBROUTINE 'NE'.

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7).JKAX2
COMMON /SIGS/ SIG(5,7) ,XSUM(64,5,7) ,XSQR(64,S,7) ,KNU?1(64,S,7)

I C KKlPl = KK2+1
KK2P1 = KK1+1
NN2Pl = NN2+1I ~WRITE(23, 105)
WRITE(23,11O) ((SIG(KK,NN) ,NN=1,NN2Pl) ,KK=KK1P1,KK2Pl)

105 FORMAT(1X,/,1X,'SIGMAS')

110 FORMAT(6(1X,F7.3))

END
C

C
SUBROUTINE BES(I ,KK)

I C** BACKGROUND ESTIMATION & SUBTRACTION
C

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VIKK(256,7)
COMMON /SIGS/ SIG(5,7) ,XSUM(64,5,7) .XSQR(64,5,7) ,XKUM(64,5,7)3 COMMON /WORK/ TEMP1(64) ,TEMP2(256,7)

NN2PI = NN2+1
C

DO 200 NN=1,N142P1

INN =1,/NN
JSTART = 2*N(NN)+INN

NNM1 = NN-1+INN

DO 200 J=JSTART,JSTOP
JL =J..k3*N(NN))/2 - INN
JR = J+N(NN)+INN
VHAT =(VIKK(JL,NNH1) + VIKK(JR,NNM1))/2.0
TEMP2(JNN) = VIKK(J,NN) - VHAT

200 CONTINUE

DO 300 NN=1,NN2Pl
INN = 1/NM
JSTART = 2*N(NN)+INN
JSTOP = JMAX2-N(NN)-INN

DO 300 J=JSTART,JSTOP
VIKK(J,NN) =TEMP2(JNN)

300 CONTINUE
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C
RETURN

C END 6

C
SUBROUTINE TD(I,KK)

C

COMMON /XINIT/ KK1,KK2,K(5),IM(5)
COMMON /SINIT/ NN2,N(7),JMAX2
COMMON /NUFRMS/ V(64,256),VII(K(256,7)

COMMON /SIGS/ SIG(5,7),XSUM(64,5,7),XSQR(64,5,7),XNUM(64,5,7)

COMMON /XCDNS/ JX(64,5),NI4{(64,5),VX(64,5)

DO 100 NW41,NN2Pl
INN = 1/NN
JSTART =2*N(NN)+INN
JSTOP JMAX2-N(NN)-INN

C
DO 100 J=JSTART,JSTOP
VIKK(J,NN) = VIKK(J,NN)/SIG(KK,NNI)

C100 CONTINUEI

JX(I,KK) = 1
NNX(I,KK) 1 I
VX(I,KK) = VIKK(3,1)

C
DO 400 NN=1,,NN2P1
INN = 1/N14
JSTART =2*N(NN)+INNI
JSTOP =JMAX2-N(UN)-INN

C
DO 400 J=JSTART,JSTOPAg
IF(VX(I,KK).GT.VIKK(J,NN)) GOTO 400i
JX(I,.KK) = J
NNX(I,KK) = M4
VX(I,KK) = VIKK(J,NN)

400 CONTINUE
C

RETURN
C ENDI

C
SUBROUTINE TDOUT(TNR,GAIN, ISEED)

C**PRITSOUTPUT OF SUBROUTINE ITDI

COMMON /XCDNS/ JX(64,5),NNX(64,5),VX(64,5)I

COMMON /SPARAM/ JMAX,NMAX,JAVG,JDEC

C FIEDE.)WIE2,5
IF(ISEED.EQ.1) WRITE(23,100)U
IF(ISEED.EQ.1) WRITE(23,110)

95 FORMAT(1X,l ',/)
100 FORMAT(' ',lX,' TNR IX Jx K N GAIN-)
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110 FORMAT(2X, - - --- ...--- 0

210 FORMAT(4X,F5.2,6X,I2 4X,I3,4X,12,6X,12,SX,F7.3,/)

IX = 1
Jxo = Jx(i.1)
KKX =1
NNXO = NNX(l1l)

IF( -VX(IKK)..O GOT301
Do30 = I ,6

Do 00= VXI=K1.I
JXO = X(I,KK).EVOGOT30
IKX =KI

N14XO =NNX(IIKK)
VXO = X(IKK

300 CONTINUE

J = JDEC*JXO
K = 2**(KKX-1)

WRITE(23,210) TNR,IX.JK,N,GAINI

RETURN
END CI
SUBROUTINE GOUT(ITRIAL, ISKIP)

C
C** PRINTS OUTPUT SUMMARY OF SNR GAIN PERFORIANCE

REAL*4 GAIN
COMMON /GAYN/ GAIN(1000)
WRITE(23 .100)

WRITE(23 ,300)
WRITE(23 ,300)

200 +FORMAT(12X,'SUMMARY OF SNR GAIN PERFORMANCE-) II

30FORMAT(12X.........--------w------- w----------',//)

400 FORMAT(' I,4XITRIALSI,4X,.GMINII7XI'GMAXI,7X,IGAVEI,7XGSIGNAI)
500 FORMAT(' ',4X,'-------',3X --------- ',3(4Xol ------- 0)

*600 FORMAT(6X,I3,4(4X,F7.3))

Do 700 ITRL =2,ITRIAL
- ITST = ISKIP * (ITRL / ISKIP)

IF(ITST.NE.ITRL) GO TO 700

CALL STATS$(GAIN, ITRL,GMIN,GMAX,GAVE ,GVAR,GSIGHA,A,B)

WRITE(23,600) ITRL,GMIN,GM.UX,GAVE,GSIGMAI

WRITE(23, 100)
RETURN

* END

* C 791
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DO 50 IVEC=1,NR

C GENERATE NEW PAIR
C GENERATE FIRST UNIFORM NUMBER

IF (K.EQ.2) GO TO 40
K 2

10 Z I * XJ• IFIX(SNGL(Z))
C X = - DFLOAT(J) + DFLOAT(J)/P

X = Z- DBLE(J) + DBLE(J)/P
Xl = TWO * X - ONE
IF(X1.EQ.0) GO TO 10
IF(Xl.GT.ONE) GO TO 10SC GENERATE SECOND UNIFORM NUMBER

20 Z = IA * AX
J = IFIX(SNGL(Z))

C AX = Z - DFLOAT(J) + DFLOAT(J)/P
AX = Z - DBLE(J) + DBLE(J)/P
X2 = TWO * AX -ONE
IF(X2.EQ.0) GO TO 20
IF(X2.GT.ONE) GO TO 20

C DETERMiINE ACCEPTANCE/REJECTION
Y1 = Xl*X1 + X2*X2
IF(Y1.EQ.0) GO TO 10

2 IF(Y1.LT.ONE) GO TO 30
GO TO 10

C TRANSFORMATION TO NORMAL DISTRIBUTION
30 Y1 = Xl * DSQRT(-TWO * DLOG(Yl)/Y1)

YZ = Yl * (XZ/X1)
XVEC(IVEC) = Yl
GO TO 50

40 K1
XVEC(IVEC) = Y2

50 CONTINUE
RETURN
END

BLOCK DATA
INTEGER*2 K
REAL*8 I,IA,P,Y2
COMMON/HOLD/I,IA,P,Y2,K

DATA K/l/,I/4194305.DO/,IA/2097153.DO/
DATA P/2147483647.DO/,Y2/0.DO/
END
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